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A B S T R A C T

Heat stress (HS) due to increased air temperature is a major agricultural problem. On the other hand, short-term
HS can represent a natural easy-to-use elicitor of bioactive compounds in plants. Similar elicitations can be
induced by biotechnological approaches such as hydroponic cultures. The present study pioneering investigated
the capability of using a short-term HS (38 °C, 5 h) as a tool to rapidly elicit rosmarinic acid (RA) content in
leaves of Melissa officinalis L. (a species for which RA is the dominant active phenolic compound) hydroponic
cultures, highlighting the cross-talk among antioxidant and signalling molecules involved in the heat acclima-
tion. During HS treatment, we found an elicitation of RA biosynthesis associated with (i) an imbalance in re-
active oxygen species (ROS) production and scavenging, (ii) an involvement of reduced ascorbate (AsA) in
maintaining a high normal reduced state of cells, (iii) an induction of heat shock proteins (i.e. HSP101-like), and
(iv) a stimulation of phytohormones. The RA biosynthesis lasted also during the recovery, although plants ac-
tivated cellular processes to partially control ROS production, as confirmed by the increased activity of AsA
regenerating enzymes, the accumulation of total carotenoids and the stimulation of total antioxidant capacity.
The unchanged values of abscisic acid, ethylene and salicylic and jasmonic acids during the recovery phase also
documented a reduced demand for protection. The present study represents a wide-ranging investigation of the
potential use of HS (without drought interaction) as a technological application for improving bioactive com-
pound production.

1. Introduction

Heat stress (HS) is defined as a condition of high air temperature
(HT; i.e. 10–15 °C above ambient) for a sufficient time to induce a ne-
gative impact on plant development, growth and reproduction (Wahid
et al., 2007). Plant species and genotypes have several capabilities to
cope with HS, and the response depends on the intensity, duration and
rate of temperature increase (Wahid et al., 2007). At very HT such as
10–15 °C above the ambient air temperature, severe cellular injury and
even cell death occur within minutes, caused by a catastrophic collapse
of cellular organization (e.g. protein denaturation/aggregation and in-
creased fluidity of membrane lipids; Schöffl et al., 1999). At moderately
HT, injuries or death may occur only after long-term exposure, which
could be attributed to reduced cellular function and overall plant fitness
(Driedonks et al., 2015).

In the plant-HS interaction, an important role is played by the ac-
cumulation of reactive oxygen species (ROS; Mittler, 2006). Usually,
ROS production rapidly becomes excessive in plants subjected to HS
(Pucciariello et al., 2012; Driedonks et al., 2015; Zhao et al., 2018),
causing a cellular damage to membranes, organelles, DNA and dena-
turation/activation of proteins (Howarth, 2005). To prevent this cell
damage and regain redox homeostasis, plants can trigger a heat stress
response (HSR) by the hyper-activation of non-enzymatic and/or en-
zymatic ROS scavenging systems (Apel and Hirt, 2004; Halliwell, 2007;
Foyer, 2018). The expression and protein level of genes responsible for
ROS scavenging are also induced under HS in several plant species
(Panchuk et al., 2002; Qiu et al., 2006; Driedonks et al., 2015), and has
been associated to basal heat tolerance (Wahid et al., 2007).

Under HS, similarly to other oxidative stresses, the ROS processing
system is not only a simple protection mechanism, but also represents a
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signal for the modulation of other multiple responses (Berkowitz et al.,
2016). Therefore, ROS are thought to be involved in the transduction of
intra- and intercellular signals controlling gene expression and activity
of anti-stress systems (Singh et al., 2019). Several studies documented
that HS together with drought lead to an increase of abscisic acid (ABA)
concentration that could regulate the acclimation process through the
promotion of heat shock proteins (HSP; Larkindale and Knight, 2002;
Liu et al., 2006). Asensi-Fabado et al. (2013) reported that prolonged
HS (alone or in combination with water stress) induced the synthesis of
ABA, salicylic acid (SA) and α-tocopherol in three Labiatae species.

Changing perspective, short-term stress conditions can also re-
present natural easy-to-use elicitors of bioactive compound production
in plants. In the last years, many attentions have been given to enhance
the production of plant secondary metabolites that are unique sources
of pharmaceuticals, food additives, flavors and industrially important
biochemicals (Ramakrishna and Ravishankar, 2011; Trivellini et al.,
2016; Thakur et al., 2018). Among elicitors, several chemical or phy-
sical tools (i.e. signal compounds and/or abiotic factors) have been
used. Recently, Khaleghnezhad et al. (2019) demonstrated that the
combination of ABA application and HS treatment positively influences
the accumulation of secondary metabolites in Dracocephalum moldavica.
Biotechnological approaches (i.e. shoots, callus, cell suspension and
root cultures; Petersen, 2013; D’Angiolillo et al., 2015) can also be used
to trigger an array of defense or stress responses that improve the yield
of secondary metabolites (Bertoli et al., 2013; Tonelli et al., 2015;
Pellegrini et al., 2018; Mosadegh et al., 2018). Hydroponic cultures
represent a good approach to investigate the effects of HS alone on
plants, in contrast with many reports conducted with standard soil
methods where HS was unavoidably combined with other related
abiotic stresses (e.g. drought and salinity, Zandalinas et al., 2018).

Melissa officinalis L. (lemon balm) is an aromatic plant from the
Mediterranean area, widely cultivated worldwide (Szabó et al., 2016).
High quantities of secondary metabolites such as phenolic compounds,
tannins and flavonoids (contained both in leaves and essential oils)
were identified/quantified in M. officinalis and represent raw material
for pharmaceutical, food, beverage, and cosmetic purposes
(Moradkhani et al., 2010). Rosmarinic acid (RA), which is con-
stitutively accumulated in field-grown plants as antimicrobial com-
pound and as protection against herbivores (Szabo et al., 1999), is the
main phenolic compound found in all organs of M. officinalis, with a
level of about 6% of the dry weight (DW) in leaves (Petersen and
Simmonds, 2003). For these reasons, as well as for its fast growth, M.
officinalis has been exposed to abiotic stress to stimulate some bioactive
compounds (e.g. RA, phenols, flavonoids, etc.). Ozone (O3) exposure
caused an alteration in leaf morphology and metabolism both in vitro
(Tonelli et al., 2015; D’Angiolillo et al., 2015) and in vivo plants
(Pellegrini et al., 2013) with an enhanced pattern of phenylpropanoids
(e.g. phenols, anthocyanins, tannins, carotenoids and RA).

The present study pioneering investigated the capability of using a
short-term HS as a tool to rapidly increase RA content in leaves of M.
officinalis hydroponic cultures, highlighting the cross-talk among anti-
oxidant and signalling molecules involved in the heat acclimation. The
soilless cultivation allowed the determination of the heating effect,
avoiding the crosstalk with drought stress. It is known that different
combinations of stresses seem to influence the transcriptome analyses
in Arabidopsis thaliana, while it cannot be predicted the response of one
single stress factor (Rasmussen et al., 2013). Specifically, the purpose of
this study was to answer the following questions: (i) Does HS elicit the
biosynthesis of RA in M. officinalis hydroponic cultures? (ii) What is the
behavior of ROS processing systems carrying the potential RA elicita-
tion? (iii) What is the role of hormonal changes in the M. officinalis-HS
interaction? We hypothesized that the short-period HS could elicit RA
production as part of the heat acclimation consisting of a cross-talk
among cellular processes and growth regulators tuned by a partial
control of ROS production.

2. Materials and methods

2.1. Plant material, culture conditions and heat treatment

Four-week-old micropropagated shoots (Tonelli et al., 2015) were
transferred to hydroponic cultivation using rockwool plug trays
(Grodan® Pro Plug) with Hoagland modified nutrient solution (for fur-
ther details, see supplementary material). The nutrient solution con-
tained the following concentration of macronutrient and trace ele-
ments: NO3

− 14mM, NH4
+ 0.5 mM, P 1.2 mM, K+ 10mM, Ca2+

4.0 mM, Mg2+ 0.75mM, Na+ 10-01mM, SO4
2- 1.97mM, Fe2+ 56 μM,

BO3
− 23.1 μM, Cu2+ 1.0 μM, Zn2+ 5.0 μM, Mn2+ 10 μM, MoO4

− 1.0
μM. The electrical conductivity and pH of the nutrient solution were,
respectively, 1.55–1.80 dSm-1 and 5.5–6 (adjusted with diluted H2SO4).
Cultures were maintained in a growth chamber at 22 ± 1 °C, 60 ± 5%
of relative humidity (RH) and under 16 h photoperiod of provided by
cool white fluorescent tubes (Philips TLM 40W/33RS) with 80 μmolm-

2 s-1 photosynthetic active radiation (PAR).
After 14–20 days of hydroponic growing, uniformly sized plantlets

were placed in a controlled environment fumigation facility under the
same climatic conditions as the growth chamber, and then subjected for
5 h to HT (38 ± 1 °C). Shoot samples were collected at 0, 1, 2, 5 and
24 h from the beginning of treatment (FBT), instantly frozen in liquid
nitrogen and stored at −80 °C until biochemical analyses.

2.2. Rosmarinic acid content

Rosmarinic acid content was determined following Tonelli et al.
(2015). High performance liquid chromatography (HPLC) separations
were performed using a PU-2089 four-solvent low-pressure gradient
pump with a UV-2077 UV/Vis multichannel detector (Jasco, Easton,
MD, USA). Analyses were performed using a Macherey-Nagel C18 250/
4.6 Nucleosil 100-5 column, at a flow rate of 1ml min−1, equipped
with a guard column, using acetonitrile (eluent A) and aqueous 0.1%
H3PO4 (eluent B). Rosmarinic acid was detected at 325 nm and quan-
tified on the basis of the integrated peak area, as compared with a
standard curve. Further details are reported in supplementary mate-
rials.

2.3. ROS production, SOD, CAT and POD activity, lipid peroxidation and
antioxidant capacity

Hydrogen peroxide production was estimated fluorimetrically using
the Amplex Red Hydrogen Peroxide/Peroxidase Assay Kit (Molecular
Probes, Invitrogen, Carlsbad, CA, USA), according to Shin et al. (2005).
Spectrofluorimetric determinations were performed with a fluores-
cence/absorbance microplate reader (Victor3 1420 Multilabel Counter,
Perkin Elmer, Waltham, MA, USA) at 530 and 590 nm (excitation and
emission resofurin fluorescence, respectively). The superoxide radical
(O2

%−) concentration was measured according to Tonelli et al. (2015),
after extraction with K/P buffer (50mM, pH 7.8), with a spectro-
photometer (Jenway 6505 UV–vis, Cole-Parmer, Stone, UK) at 470 nm,
after subtracting the background absorbance due to the buffer solution
and to the assay reagents.

Enzymes were extracted from plantlet material (200mg fresh
weight, FW) with 2ml of 50mM sodium phosphate (Na/P) buffer (pH
7.0) containing 1.0mM EDTA, 1.0 mM PMSF and 2.0% insoluble PVPP
(w/v), according to Pistelli et al. (2017). Superoxide dismutase (SOD,
EC 1.15.1.1) activity was assayed in terms of its ability to inhibit the
photoreduction of NBT, according to the method of Beyer and Fridovich
(1987). Spectrophotometer determinations were performed at 560 nm
(Shimadzu UV-1800, Shimadzu Corporation, Milan, Italy). Catalase
(CAT, EC 1.11.1.6) activity was assayed according to the method of
Aebi (1984), by monitoring the decomposition of H2O2 for 1min at
240 nm. Peroxidase activity was assayed according to the method of
Hemeda and Klein (1990) by measuring the decomposition of H2O2 for
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10min at 470 nm. Ascorbate peroxidase (APX, EC 1.11.1.11) activity
was assayed according to Nakano and Asada (1981), by measuring the
oxidation of AsA at 290 nm for 1min (at 25 °C).

Lipid peroxidation was determined by the thiobarbituric acid re-
active substances (TBARS) method (Heath and Packer, 1968), after
extraction with trichloroacetic acid (TCA; 0.1%, w/v). The mal-
ondialdehyde (MDA) concentration was determined at 532 nm cor-
rected for nonspecific turbidity by subtracting the absorbance at
600 nm using a spectrophotometer (Jenway 6505 UV–vis, Cole-Parmer,
Stone, UK).

The antioxidant properties were assessed spectrofluorimetrically by
the Oxygen Radical Absorption Capacity (ORAC) and Hydroxyl Radical
Antioxidant Capacity (HORAC) assays (Ou et al., 2001, 2002). Spec-
trofluorimetric determinations were performed with a fluorescence/
absorbance microplate reader (excitation/emission=485/527 nm and
485/520, respectively). The final ORAC values were calculated by using
a regression equation between the Trolox concentration and the net
area under the fluorescein (FL) decay curve. The final HORAC values
were calculated using a regression equation between the standard an-
tioxidant concentration and the net area under the curve. Further de-
tails about the investigation of ROS production, SOD activity, lipid
peroxidation and antioxidant capacity are reported in supplementary
materials.

2.4. Cell and membrane damage

For visualization of dead cells, Evans Blue staining was used ac-
cording to the method of Keogh et al. (1980) with slight modifications.
For determination of H2O2, fresh plantlet material was stained with
DAB using a modification of the procedure described by Thordal-
Christensen et al. (1997). Observations were performed under a light
microscope (DM 4000 B, Leica, Wetzlar, Germany). Further details are
reported in supplementary materials.

2.5. Enzymatic scavenging of ROS

Monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) activity
was assayed according to the method Huang et al. (2008) by measuring
the oxidation of NADH for 1min through the decrease in absorbance at
340 nm. Dehydroascorbate reductase (DHAR, EC 1.8.5.1) activity was
assayed by measuring the production of AsA by dehydroascorbic acid
(DHA) reduction at 265 nm for 1min (at 25 °C), according to the
method of Hossain and Asada (1984). Glutathione reductase (EC
1.6.4.2) activity was assayed according to the method of Foyer and
Halliwell (1976) by monitoring the oxidation of NADPH by GSSG for
3min (at 30 °C) through the decrease in absorbance at 340 nm. For all
assays, proteins were determined according to Bradford (1976), using
bovine serum albumin (BSA) as standard. Further details about the
investigation of chloroplast and general enzymatic scavenging of ROS
are reported in supplementary materials.

2.6. Non-enzymatic scavenging of ROS

Ascorbate and DHA content were measured spectrophotometrically,
according to Kampfenkel et al. (1995), after extraction with TCA (5%,
w/v). This assay is based on the reduction of ferric ion (Fe3+) to ferrous
ion (Fe2+) with AsA in acid solution followed by formation of the red
chelate between Fe2+ and 4,7-diphenyl-1,10-phenanthroline (bath-
ophenanthroline) that absorbs at 525 nm.

Total and oxidized glutathione (GSSG) content were measured
spectrophotometrically, according to Pellegrini et al. (2013), after ex-
traction with TCA (5%, w/v). This assay is based on an enzymatic re-
cycling procedure in which glutathione was sequentially oxidized by
5,50-dithiobis-2-nitrobenzoic acid and reduced by NADPH in the pre-
sence of glutathione reductase. All determinations were performed at
412 nm. Oxidized glutathione was determined after removal of reduced

glutathione (GSH) from the sample extract by derivatization with 4-
vinilpyridine. The amount of GSH was calculated by subtracting the
GSSG amount, as GSH equivalents, from the total glutathione amount.

Proline (Pro) content was determined following Bates et al. (1973),
after extraction with sulfosalicylic acid (3%, v/v). Spectrophotometric
determinations were performed at 520 nm, using toluene as a blank.

Carotenoids were measured according to Cotrozzi et al. (2017) after
extraction with HPLC-grade methanol. HPLC separations were per-
formed at room temperature with a reverse-phase Dionex column
(Acclaim 120, C18, 5 μm particle size, 4.6 mm internal diameter
×150mm length). Further details about the investigation of chlor-
oplast and general non-enzymatic scavenging of ROS are reported in
supplementary materials.

2.7. Hormones and signalling molecules

Abscisic acid was determined by an indirect ELISA based on the use
of DBPA1 monoclonal antibody, raised against S(+)-ABA, as described
by Trivellini et al. (2011). The ELISA was performed following Walker-
Simmons (1987), with minor modifications. Abscisic acid was measured
after extraction in distilled water (water: tissue ratio= 10:1, v/w)
overnight at 4 °C and quantified at 415 nm with an absorbance micro-
plate reader (MDL 680, Perkin-Elmer, Waltham, MA, USA).

Fifteen min after excision, ET production was measured by en-
closing one plantlet in an air-tight container (250ml). Gas samples
(2 ml) were taken from the headspace of containers after 1 h incubation
at 22 °C. Ethylene concentration in the sample was measured by a gas
chromatograph (HP5890, Hewlett-Packard, Ramsey, MN, USA) using a
flame ionization detector, a stainless steel column (150× 0.4 cm in-
ternal diameter packed with Hysep T). Analytical conditions were as
follows: injector and transfer line temperature at 70 and 350 °C, re-
spectively, and carrier gas nitrogen at a flow rate of 30ml min−1

(Mensuali Sodi et al., 1992). Quantification was performed against an
external standard.

Conjugated and free SA were determined according to Zawoznik
et al. (2007), with minor modifications. HPLC separation was per-
formed at room temperature with a Dionex column described above. SA
was quantified fluorometrically (RF 2000 Fluorescence Detector,
Dionex, USA), with excitation at 305 nm and emission at 407 nm and it
was eluted using the mobile phase described above. The flow rate was
0.8 ml min−1. Further details are reported in supplementary material.

For JA extraction, plantlets were added to 3ml methanol and in-
cubated overnight at 4 °C. HPLC separations were performed with the
Dionex system and column described above. Analytical conditions were
as follows: absorbance at 210 nm, mobile phase containing 0.2% (v/v)
acidified water, and the flow rate was 1ml min−1 (Kramell et al.,
1999). Further details are reported in supplementary material.

2.8. Immunoblotting of hsp 101

Proteins were fractionated on a NuPAGE 10% Bis-Tris gel. Blotting
was performed on a PVDF membrane, using a Trans-Blot Turbo Transfer
System (Biorad, Milan, Italy). The chemiluminescent signal was de-
tected Enhanced ChemiLuminuescence reagent (LiteAblot TURBO) and
Biospectrum Imaging System (UVP, Analytik Jena, Upland, CA). Amido
Black staining of total proteins on the PVDF membrane was performed
using standard procedure. Proteomic analyses were performed at 0, 1,
2, 3, 4, and 5 h FBT. The immunoblotting was performed in duplicate
showing similar results.

2.9. Statistics

Normality of data was preliminarily tested by the Shapiro-Wilk W
test. The effects of high temperature and time were tested using two-
way analysis of variance (ANOVA) and comparisons among means were
determined by the Tukey’s HSD post hoc test. Analyses were performed
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by NCSS 2000 Statistical Analysis Systems Software (Kaysville, UT,
USA).

3. Results

3.1. Rosmarinic acid content

High temperature significantly increased rosmarinic acid content
starting to 2 h FBT and reaching a high value at 24 h FBT (+59% in
comparison to controls; Fig. 1).

3.2. ROS production, SOD activity, lipid peroxidation and antioxidant
capacity

The content of H2O2 and O2
%− significantly increased under HT

throughout the whole experiment. Both parameters reached their
maximum already at 1 h FBT (about 2- and 4-fold higher than controls,
respectively; Fig. 2 A–B). The activities of SOD, CAT and POD sig-
nificantly increased under HT already at 1 h FBT (about 2-fold higher
than controls, respectively; Fig. 2 C–E), and maintained similar in-
creased levels throughout the whole period of the experiment (except
for POD activity at 5 h FBT; Fig. 2 E). Membrane integrity was sig-
nificantly affected by high temperature as confirmed by the MDA
concentrations that were always higher in treated shoots than in con-
trols, starting from 1 h FBT (+100%; Fig. 2 F). The ORAC values
showed a similar trend than SOD, already increasing at 1 and 2 h FBT,
and even more at 5 and 24 h FBT, when reached levels around 100%
higher than controls (Fig. 2 G). Compared with controls, HORAC of
treated plants significantly decreased at 1 h FBT (-63%), did not show
differences at 2 and 5 h FBT, and decreased again at 24 h FBT (Fig. 2 H).

3.3. Cell and membrane damage

Throughout the whole experiment, leaves appeared macroscopically
symptomless. However, HT-injuries were already detectable at the
microscopic level just after 1 h FBT, as confirmed by the appearance of
dead cells (Fig. 3 A–E). Histological staining showed local accumulation
of H2O2 in HT-treated material at 5 h FBT, evidenced by reddish-brown
areas (Fig. 3 F–J).

3.4. Enzymatic scavenging of ROS

High temperature strongly decreased APX activity already at 1 h
FBT (about 2-fold lower than control), as well as at the other times of
analysis (Fig. 4 A). Differently to APX activity, MDHAR and DHAR ones
increased throughout the whole experiment under HT, except for DHAR
activity at 5 h FBT. MDHAR activity especially peaked at 1 h FBT
(+281%, compared with controls), and again at 24 h FBT (+49%;
Fig. 4 B–C). The activity of GR increased under HT only at 5 h FBT
(+65%, compared with controls), but resulted lower in treated mate-
rial than in control at the end of the recovery period (i.e., 24 h FBT,
-66%; Fig. 4 D).

3.5. Non-enzymatic scavenging of ROS

High temperature significantly increased AsA/DHA ratio and Pro
content: AsA/DHA ratio started to increase at 1 h FBT and peaked at 2 h
FBT (about 2-fold higher than controls; Fig. 5 A); Pro started to increase
at 2 h FBT and reached its maximum at 5 h FBT (about 3-fold higher
than control; Fig. 5 D). Both AsA/DHA ratio and Pro in treated plants
came back to control levels at the end of the recovery period (i.e. 24 h
FBT). Differently to AsA/DHA and Pro, GSH/GSSG ratio and total car-
otenoids (Tot Car) decreased under HT at 1 and 2 h FBT (around -15
and -20% for GSH/GSSG and Tot Car, respectively; Fig. 5 B–C). GSH/
GSSG in treated plants recovered at the end of the treatment and re-
mained at control levels at 24 h FBT (Fig. 5 B). Tot Car did not recover
at the end of the treatment, but markedly increased at 24 h FBT (+19%,
Fig. 5 C).

3.6. Hormones and signalling molecules

High temperature significantly increased all the examined hor-
mones and signalling molecules only during the treatment period, al-
though with a different timing among these molecules (Fig. 6). Abscisic
acid reached its maximum at 1 h FBT (10-fold higher than control),
slightly decreased at 2 and 5 h FBT, and reached control levels at 24 h
FBT (Fig. 6 A). Ethylene started to increase at 2 h FBT, reached its
maximum at 5 h FBT (2-fold higher than control) and dropped to con-
trol levels at 24 h FBT (Fig. 6 B). Salicylic acid peaked at 1 h FBT
(+690%) and dropped later, reaching control levels at 5 and 24 h FBT
(Fig. 6 C); JA slightly increased at 1 h FBT, reached its maximum at 2 h
FBT (more than 3-fold higher than control), and came back to control
values at 5 and 24 h FBT (Fig. 6 D).

3.7. Induction of heat shock protein Hsp101 under high temperature

It has been established that HSP101 plays a major role in thermo-
tolerance (Queitsch et al., 2000), preventing deleterious effects of heat
at the cellular levels. In this context, the level of Hsp101 protein
reached a high level between 2 and 4 h FBT. Subsequently, the M. of-
ficinalis HSP101-like level decreased (Fig. 7).

4. Discussion

4.1. Heat stress elicits the biosynthesis of rosmarinic acid in Melissa
officinalis hydroponic cultures

Plant tissue cultures can be considered a convenient and useful
experimental system for (i) examining various factors influencing the
biosynthesis of desired products and (ii) exploring effective bio-
technologies to enhance their production without interference with
pathogens and other microbes (Chattopadhyay et al., 2002). They are
considered an alternative to the whole plant in relation to their capacity
to produce homogeneous quality and quantity of secondary metabo-
lites, independent of seasonal and geographical limitations (Xu et al.,
2011). To enhance the yield of high-value secondary metabolites, plant

Fig. 1. Time course of rosmarinic acid content in leaves of Melissa officinalis
exposed to high temperature (38 °C, 5 h, closed circle) or maintained at 22 °C
(open circle). Data are shown as mean ± standard error. Measurements were
carried out at 0, 1, 2, 5 and 24 h from the beginning of treatment. Boxes show
the results of the full-factorial two-way ANOVA with temperature and time as
variability factors (***: P≤ 0.001). According to the Tukey’s HSD Post Hoc
test, different letters indicate significant differences (P≤ 0.05). The grey bar
indicates the temperature treatment (5 h). Abbreviations: FW, fresh weight.
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Fig. 2. Time course of hydrogen peroxide (H2O2, A), superoxide anion radical (O2
%−, B), superoxide dismutase activity (SOD, C), catalase (CAT, D), peroxidase (POD,

E), malondialdehyde (MDA, F), antioxidant capacity expressed as oxygen radical absorbance capacity (ORAC, G) and hydroxyl radical antioxidant capacity (HORAC,
H) in leaves of Melissa officinalis exposed to high temperature (38 °C, 5 h, closed circle) or maintained at 22 °C (open circle). Data are shown as mean ± standard
error. Measurements were carried out at 0, 1, 2, 5 and 24 h from the beginning of treatment. Boxes show the results of the full-factorial two-way ANOVA with
temperature and time as variability factors (***: P≤ 0.001). According to the Tukey’s HSD Post Hoc test, different letters indicate significant differences (P≤ 0.05).
The grey bar indicates the temperature treatment (5 h). Abbreviations: FW, fresh weight; GAE, gallic acid equivalents; TE, trolox equivalents.
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tissue cultures are manipulated using different strategies, such as the
use of physical and chemical elicitors (Khan et al., 2018).

Among abiotic stress, it is well known that HS induces the bio-
synthesis of phenolic compounds (e.g. phenylpropanoids and flavo-
noids) and suppresses their oxidation (Rivero et al., 2001; Wahid et al.,
2007). However, few reports have evaluated the impact of HS on in-
dividual metabolites (Fletcher et al., 2005; Khaleghnezhad et al., 2019).
Here, our study shows a significant increase of RA content in M. offi-
cinalis hydroponic cultures under HT, from 2 h FBT until the end of the

experiment (i.e. 24 h FBT; Fig. 1), identifying HT as a RA elicitor. Al-
though Fletcher et al. (2005) reported that prolonged HS (30 °C day/
night for 4 weeks) negatively regulated RA accumulation by causing a
potential rapid biological breakdown of RA in Mentha spicata leaves,
our outcome is in agreement with a number of previous studies focused
on other stressors: the stimulation of RA by biotic (such as yeast eli-
citor) and abiotic elicitors (e.g. silver ions, methyl jasmonate and O3)
has been previously observed in cell cultures of several plants [e.g.
Lithospermum erythrorhizon (Ogata et al., 2004), Coleus blumei (Petersen

Fig. 3. Localization of dead cells visualized with Evans blue staining (A–E) and of hydrogen peroxide (H2O2) visualized with the 3,3′-diaminobenzidine (DAB) uptake
method (F–J) in leaves of Melissa officinalis exposed to high temperature (38 °C, 5 h). The assays were performed at 0 (i.e. before starting the treatment), 1, 2, 5 and
24 h from the beginning of treatment. Bars: 50 μm.

Fig. 4. Time course of ascorbate peroxidase (APX, A), monodehydroascorbate reductase (MDHAR, B), dehydroascorbate reductase (DHAR, C) and glutathione
reductase (GR, D) activities in leaves of Melissa officinalis exposed to high temperature (38 °C, 5 h, closed circle) or maintained at 22 °C (open circle). Data are shown
as mean ± standard error. Measurements were carried out at 0, 1, 2, 5 and 24 h from the beginning of treatment. Boxes show the results of the full-factorial two-way
ANOVA with temperature and time as variability factors (***: P≤ 0.001). According to the Tukey’s HSD Post Hoc test, different letters indicate significant
differences (P≤ 0.05). The grey bar indicates the temperature treatment (5 h).
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et al., 1994; Szabo et al., 1999), and Salvia miltiorrhiza (Yan et al., 2006;
Zhao et al., 2010)], including M. officinalis (Tonelli et al., 2015).

4.2. ROS generation and scavenging during rosmarinic acid elicitation

One of the events occurring in response to HSs is ROS production
(for a review see Suzuki and Mittler, 2006; Suzuki et al., 2014) and
oxidative stress is involved directly or indirectly in the RA accumula-
tion observed in our study. Although visible symptoms of oxidative
stress were absent in plants subjected to HT, DAB staining and Evan’s
blue incorporation indicated that H2O2 deposition and cell death events
occurred starting at 1 h FBT. The loss of membrane integrity was also
confirmed by the significant build-up of MDA by-products observed
starting at 1 h FBT, revealing that membrane lipid peroxidation oc-
curred (Zhao et al., 2018). Both H2O2 and O2

•− contents increased at
the same time, confirming that an imbalance in ROS production and
scavenging occurred (Demidchik, 2015). To deal with oxidative da-
mage, plants have evolved different ROS processing systems that are
able to respond to ROS production and to transmit the stress signals
(Foyer, 2018). Chloroplasts contain several pathways that limit H2O2

accumulation and maintain cellular redox potential, including the
Halliwell-Asada cycle (Foyer and Shigeoka, 2011). In our study, AsA/
DHA ratio significantly and quickly increased under HT-treatment
(Fig. 5), confirming the involvement of AsA in maintaining a high
normal reduced state of cells, as well as in signalling and/or limiting the
inhibitory effects of ROS-induced oxidative stress (Meyer, 2008;
Pellegrini et al., 2013; Zou et al., 2016). The reduced state of AsA ob-
served under HT treatment might be ascribable to (i) the activity of AsA

regenerating enzymes, as confirmed by the increased activity of
MDHAR and DHAR during the initial and recovery phases (Fig. 4) and
(ii) the capability of converting GSSG in GSH, via the Halliwell-Asada
cycle (Gill and Tuteja, 2010). The GSH/GSSG ratio (an indicator of
general cellular redox balance) showed a marked decrease during the
first two hours of HT treatment (Fig. 5; although GR activity remain
unchanged), indicating that GSH plays a role in mediating the defense
responses of plant cells to HS (Zou et al., 2016). Concomitantly, SOD,
CAT and POD activities increase was observed in HT-treated shoots
throughout the whole experiment, suggesting the subsequent reduction
of superoxide to water. This response has been already detected in other
plants to counteract the ROS production during HS condition (Suzuki
et al., 2014; Zhao et al., 2018). Indeed, the levels of the oxidative-da-
mage markers (i.e. ROS and MDA contents) decreased at the end of the
treatment as well as after recovery, reaching values slightly higher than
controls (similarly to SOD activity). These outcomes suggest that M.
officinalis hydroponic cultures activated cellular processes to partially
control ROS production (e.g. ROS contents never reached levels to
cause visible symptoms) and to induce a heat acclimation. In this
context, the protective function of HSP might occur only under the first
hours of HS (i.e. from 2 to 4 h FBT), as suggested by the transient in-
duction of HSP101-like in treated plants (Fig. 7). The activation of HSPs
plays an essential role in preventing or minimizing the harmful effect of
heat at the molecular level (Gullì et al., 2007). A signal cascade for HS
response activated by HS Transcription Factors (HSF) has been ex-
tensively examined in promoting the transcription of HSP genes in
abiotic stress conditions where ROS are produced (Guo et al., 2016).
The subsequent heat acclimation included the prolonged RA elicitation

Fig. 5. Time course of reduced/oxidized ascorbate (AsA/DHA, A) and glutathione (GSH/GSSG, B) ratio, total carotenoids (Tot Car, C) and proline (D) in leaves of
Melissa officinalis exposed to high temperature (38 °C, 5 h, closed circle) or maintained at 22 °C (open circle). Data are shown as mean ± standard error. The
measurements were carried out at 0, 1, 2, 5 and 24 h from the beginning of treatment. Measurements were carried out at 0, 1, 2, 5 and 24 h from the beginning of
treatment. Boxes show the results of the full-factorial two-way ANOVA with temperature and time as variability factors (***: P≤ 0.001). According to the Tukey’s
HSD Post Hoc test, different letters indicate significant differences (P≤ 0.05). The grey bar indicates the temperature treatment (5 h). Abbreviations: FW, fresh
weight.
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that was maintained also during the recovery phase.
Among other non-enzymatic processing systems, carotenoids are

pigments that play a multitude of functions in plant metabolism in-
cluding photoprotection, prevention of peroxidative damage to the
membrane lipids, and ROS scavenging (Havaux, 1998). In our study,
Tot Car content decreased starting from 1 h FBT, but it significantly
increased at the recovery time, suggesting that these metabolites could
be consumed by the cell to minimize the possible ROS generation and
stabilize the lipid phase of the thylakoid membranes (as confirmed by
H2O2, O2

•− and MDA levels returned slightly higher than controls after
the HT treatment; Sharma et al., 2012).

A key adaptive mechanism in many plants grown under abiotic
stress is the production of organic compounds of low molecular mass
involved in osmotic adjustments (Hare et al., 1998). Proline not only
facilitates water uptake, but also protects cells against ROS accumula-
tion under stress conditions by recycling of NADPH via its synthesis
from glutamate and acting as a free radical scavenger (Soares et al.,
2018). In our study, Pro accumulation was observed at 2 and 5 h FBT,

indicating that also this compound likely participated in the reduction
of oxidative damage by buffering cellular redox potential (Verbruggen
and Hermans, 2008) and enhancing photochemical electron transport
activity (Zhao et al., 2018).

To further evaluate the ability of ROS processing systems to provide
defense and regenerate the active reduced forms, we also analyzed the
total antioxidant capacity of M. officinalis hydroponic cultures.
According to the ORAC assay, the antioxidant capacity was significantly
enhanced under HT throughout the entire period of the experiment,
confirming the marked free-radical scavenging ability of antioxidants
(in particular against peroxyl radical) in treated shoots (Pellegrini et al.,
2013). According to the HORAC method, instead, the antioxidant ca-
pacity initially decreased at 1 h FBT, did not change at 2 and 5 h FBT,
and decreased again at the recovery time. This outcome indicates the
reduced radical prevention ability of treated shoots (expressed as metal-
chelating properties of antioxidants; Ou et al., 2002; Marchica et al.,
2019). It is worth to note that ORAC and HORAC assays measure two
different, but equally important, aspects of antioxidant properties

Fig. 6. Time course of abscisic acid (ABA, A) and ethylene (B), salicylic (SA, C) and jasmonic (JA, D) acids content in leaves of Melissa officinalis exposed to high
temperature (38 °C, 5 h, closed circle) or maintained at 22 °C (open circle). Data are shown as mean ± standard error. Measurements were carried out at 0, 1, 2, 5
and 24 h from the beginning of treatment. Boxes show the results of the full-factorial two-way ANOVA with temperature and time as variability factors (***: P≤
0.001). According to the Tukey’s HSD Post Hoc test, different letters indicate significant differences (P≤ 0.05). The grey bar indicates the temperature treatment (5
h). Abbreviations: FW, fresh weight.

Fig. 7. Immunoblotting of proteins extracted from hydroponic cultured of Melissa officinalis exposed to high temperature (38 °C, 5 h). The antibodies used recognized
HSP101. Blots were stained with Amido Black to confirm loading and transfer.
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(radical chain breaking and radical prevention, respectively). Conse-
quently, it is expected that the samples with high ORAC values do not
necessarily have high HORAC values, and vice versa (Ou et al., 2002).

4.3. Hormonal changes in M. officinalis under heat stress

Several studies have documented that HS can induce an alteration of
hormonal homeostasis by modifying the biosynthesis and/or the com-
partmentalization of the main signalling molecules such as ABA, ET, SA
and JA (Maestri et al., 2002; Wahid et al., 2007). Abscisic acid is a
ubiquitous phytohormone with a key role in the tolerance to stressful
conditions that quickly affect plant water balance through the regula-
tion of stomatal closure (Basu and Rabara, 2017). In the present study,
the variation of ABA, which severely raised at 1 h FBT and then de-
creased at 2 and 5 h FBT, and finally reached control levels at the re-
covery time, confirms the involvement of this phytohormone in bio-
chemical pathways essential for triggering HS-acclimation during the
initial phase of M. officinalis response to HT treatment (Kurepin et al.,
2008; Asensi-Fabado et al., 2013). Interesting recent results demon-
strated that the combination of HS treatment and exogenous ABA ap-
plication positively influences the accumulation of RA in dragonhead
plants (Khaleghnezhad et al., 2019). Conversely, ET production in-
creased under HT-treatment only at 2 and 5 h FBT, indicating that this
gaseous hormone likely took part in consecutive events to regulate HT-
tolerance and to protect against HT-induced oxidative stress (Suzuki
et al., 2005; Asensi-Fabado et al., 2013). Ethylene, SA and JA are im-
portant components of signalling pathways involved in response to
abiotic stresses (UV, O3 and heat; Kohli et al., 2013; Pellegrini et al.,
2013, 2016; Cotrozzi et al., 2017; Landi et al., 2019). Salicylic acid has
been found to mediate heat tolerance through increases in antioxidant
enzyme activities and heat-induced oxidative stress alleviation
(Larkindale and Knight, 2002; Pan et al., 2006; Liu et al., 2006). Few
studies to date have investigated the implications of JA in heat toler-
ance; however, some lines of evidence suggest that this compound is
involved in the regulation of HS tolerance in Arabidopsis (Kazan, 2015).
In our study, the concomitant increase of SA and JA levels observed
during the first two hours of HT (SA peaked at 1 h FBT, whereas JA
peaked at 2 h FBT) confirms that a multifactorial regulation of shoot
HT-acclimation occurred (Clarke et al., 2009). Interestingly, the un-
changed values of ABA, ET, SA and JA at the recovery time might be
related to a reduced demand for protection, suggesting a key role for
these hormones in HT-acclimation signalling causing the above-de-
scribed ROS regulation and RA elicitation (Clarke et al., 2004).

In conclusion, our study shows that short-period HT is a valuable
tool to improve the production of high-value secondary metabolites in
M. officinalis shoots. At the timing and level utilized in this study, HT
induced a cross-talk between cellular processes and growth regulators
which induced a partial control of ROS production, and leaded to an
HT-acclimation involving a RA elicitation, without causing macroscopic
damage to the plants. The present study represents a pioneering and
wide-ranging investigation of the potential use of HT (without drought
interaction) as a technological application for improving bioactive
compound production.
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