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Trees in urban environment: old and new 
challenges for urban greening

Beginning with the second industrial revolution, cities have 
gradually extended their green urban areas to mitigate the 
overbuilding, with their relative effects on climate and com-
munity (Tyrväinen et al. 2005). Nowadays, the terms “green 
building”, “green urbanism” or “green infrastructure” have 
become very popular and are usually used as a banner for 
the new urban planning.

Environmental sustainability, improvement of health and 
socio-psychological issues are only few aspects related to 
the green planning (Zuo and Zhao 2014; McDonnell and 
MacGregor-Fors 2016; Song et al. 2018). Some studies have 
demonstrated that the improvement of the green component 
in the urban environment can effectively: reduce the phe-
nomenon of heat island, sequestrate atmospheric carbon 
dioxide  (CO2), capture rainwater and, improve the air qual-
ity (Berland et al. 2017; Song et al. 2018; Xing and Brim-
blecombe 2020).

Trees are the most important natural element in the urban 
environment (Tyrväinen et al. 2005); however, the com-
mon utilized term “element” is inadequate and completely 
detached from the concept of living organisms, leading to 
the idea that urban plants are mere ornamental elements that 
produce benefits, without thinking about the well-being of 
plants themselves. This erroneous idea very often leads to 
planning errors related to the incorrect choice of plants in 
urban environments, which, in turn, undermine the benefits 
of green areas to citizens, namely ecosystem services.

Abstract Urban trees provide vital ecosystem services 
such as mitigating heat island, improving air quality by 
removing various air pollutants, capturing rainwater, and 
acting as topsoil carbon storage. The aesthetic value of urban 
trees is also another feature that has to be considered in the 
context of urban greening. Classical criteria for the selection 
of urban trees have to respond to new challenges imposed 
to the cities in a near future. Global climate change factors 
increase the harshness of our cities, and thereby the plant 
resilience to abiotic stresses has also to be seriously consid-
ered for planning the urban greening. Red-leafed species, 
characterized by the permanent presence of foliar antho-
cyanins, show a greater tolerance to different environmental 
cues than green-leafed species commonly used in our cit-
ies. In addition, red tree species own a great aesthetic value 
which has been underestimated in the context of urban areas, 
especially in the harsh Mediterranean cities. In this study, we 
emphasize the “privilege of being red” from different point 
of view, in order to drive the attention to the possibility to 
increase the use of red-leafed species for urban “greening”. 
Some possible negative aspects related to their use are rebut-
ted and the direction of future researches are proposed.
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The strong efforts to “build in green” is in many cases 
not adequately supported by a correct management that 
takes into account the plant response to stress related to the 
urban environment (e.g. air pollution, water shortage, nutri-
ent deficiency, soil pollution, high temperatures) (Watson 
et al. 2014; Allen et al. 2017). Moreover, the aforementioned 
stressful conditions of an urban environment to which tree 
species are normally exposed, could become a more seri-
ous limiting factor due to the harness imposed by global 
climate change (Yang 2009; Churkina et al. 2015; Ordóñez 
and Duinker 2015; Cotrozzi et al. 2016, 2017).

Only little information is available about trees, climate 
change and urban environment interactions if compared to 
data from studies conducted on forests or natural ecosystems 
(Ordóñez and Duinker 2015; Pretzsch et al. 2017). A study 
conducted in Philadelphia found that the predicted global 
climate change effects will result in suboptimal growth con-
ditions for ten commonly used tree species, while others 
will thrive (Yang 2009). If the climate change factors have 
adverse effects for some tree species, for others they may 
exert the opposite result. A worldwide analysis conducted 
by Pretzsch et al. (2017) selected 10 metropolises around the 
world over four climate zones and found interesting results 
about climate change factors and plant interactions. The 
authors concluded that heat island, in concomitance with 
climate change factors contributed 14 and 21% in accelerat-
ing the tree growth compared to the rural counterparts. This 
assumption strengthens the idea that not all tree species are 
negatively affected by urban environmental conditions, but 
tree species with different degrees of susceptibility would 
show different responses to urban stressors (Cotrozzi et al. 
2018; Araminiene et al. 2019; Sicard et al. 2018; Landi et al. 
2019). However, an acceleration of growth could also accel-
erate the process of senescence itself, thereby shortening the 
tree lifetime and requiring a more dynamic management of 
green areas by municipalities (Pretzsch et al. 2017).

Many efforts have yet to be done for the selection of trees 
suitable for a specific urban area, in view of the actual lack 
of a large selection of plants for urban environment (usually 
non selected native species are used) and the lack of con-
textualization of each species to the planting area (microcli-
mate, soil conditions, water supply, light and other factors) 
(Sjöman et al. 2012). These factors have contributed to cre-
ate low tree species diversity in urban areas by choosing the 
most popular tree species, which in turn may not result the 
best solution in terms of plant resilience to the urban envi-
ronment (e.g. insect pests or fungal disease outbreak) (Sjö-
man et al. 2012; Vogt et al. 2017). The selection of trees that 
demonstrate a marked resistance to abiotic stresses should 
therefore be encouraged to respond to actual and future chal-
lenges of urban greening (Yang 2009; Sicard et al. 2018).

From an ornamental point of view, tree species may differ 
in shape, size, habitus (deciduous or evergreen) and also in 

crown color. All these macroscopic features translate into 
complex morpho-anatomical, allometric, physiological, and 
biochemical responses when plants sense a specific stress, 
and this can determine the success or the weakness of a 
specific tree species in a specific urban environment. Among 
others, recent studies have pointed the attention on trees spe-
cies able to produce peculiar pigments in leaves, namely 
anthocyanins (ACNs), which confer them a well-appreciated 
red/purple coloration (Kyparissis et al. 2007; Hughes et al. 
2007; Lo Piccolo et al. 2018). Acer platanoides L. var. schw-
edleri nigrum, A. pseudoplatanus L. var. atropurpureum, A. 
palmatum Thunb. var. atropurpureum, Fagus sylvatica L. 
var. atropunicea, Corylus maxima Mill. var. purpurea, Pru-
nus cerasifera Ehrh. var. pissardii, Cercis canadensis L. var. 
forest pansy, Cotinus coggygria Scop. var. royal purple are 
the most widely used permanent red-leafed species for urban 
areas. These tree species have been selected by humans for 
their high ornamental value. However, besides their great 
aesthetic values, the constitutive presence of these color-
ful flavonoids on leaves, as shown in next sections, could 
also help these species to better accommodate some abiotic 
stressors, which is particularly advantageous for urban trees 
in the era of global climate change.

Chemistry and ecological roles of ACNs

ACNs are a conspicuous class of water-soluble pigments 
(ranging from pale pink, to red–purple and blue) which are 
responsible for the amazing color versatility of plant king-
dom all around the world (Grotewold 2006). ACNs belong to 
the family of flavonoids, likely the most studies pathway of 
polyphenol metabolism in planta (Landi et al. 2015). ACNs 
are di- or tri-hydroxy B-ring-substituted flavonoids contain-
ing a flavylium cation which, owing to its conjugated double 
bonds, absorbs visible light with a peak in the 500–550 nm 
waveband (Fedenko et al. 2017). The wide range of anthocy-
anin-derived colors depends on the degree of hydroxylation 
and the number and/or type of substituted groups. To date, 
17 anthocyanidins have been isolated, but most of these are 
found only in reproductive structures and only six aglycones 
(cyanidin, delphinidin, malvidin, pelargonidin, peonidin, and 
petunidin) have been identified in vegetative organs (Silva 
et al. 2016).

ACN pathway has been deeply studied in the last decades 
and this branch of phenylpropanoid metabolism has been 
extensively described, whereas their ecological roles is still 
a matter of argue. ACNs are synthetized in a wide range 
of plant tissues of different plant organs including leaves, 
flowers, fruits, roots, tubers and stems (Ellestad 2006; 
Winefield et al. 2009; Yoshida et al. 2009) and their pos-
sible ecological functions have puzzled scientists for well 
over a century. Mimicry, pollinator attraction, herbivory 
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repellence, and protection from abiotic stresses are the major 
ecological roles proposed for this widespread class of pig-
ments (Winefield et al. 2009). Though the hypothesis that 
ACNs may have a protective role in plants date back to 1879 
(Pringsheim 1879), the way through which they accommo-
dated environmental cues is still highly debated.

In the next section, the possible ameliorative role(s) 
exerted by ACNs in a modern urban environment (Fig. 1), 
naturally exposed to multiple abiotic stressors, is depicted 
with the attempt to highlight ‘the privilege of being perma-
nently red’ in our cities in the age of global climate change.

Benefits of foliar presence of ACNs for tree species 
in urban environment

Photoprotection

Sunscreen

The term “photoprotection” is widely used with different 
meanings by scientists dealing with plant physiology, bio-
chemistry, genetics and ecology. We will refer to “photopro-
tection” in its broader meaning, intended as “protection from 
light-triggered damages at all physiological/biochemical/
genetic level which induce depression of the photosynthetic 
process”. In this context, ACNs can serve multiple roles in 
photoprotecting the leaves from abiotic-stress-promoted 
photosynthesis impairment, acting as sunscreens, reac-
tive oxygen species (ROS)-scavengers and sugar buffering 
compounds.

The excess of light burden to photosynthetic apparatus 
can undermine the chloroplast functionality and yield, as tes-
timony by a rapid decline in the quantum efficiency of photo-
system II (PSII), and a reduction in carbon fixation (Murata 
et al. 2007; Gururani et al. 2015). Abiotic stressors, which 
can affect the whole plant status, including chloroplast, lead 

to an excess of excitation energy within photosynthetic appa-
ratus (Murata et al. 2007) and trees in the urban environment 
are subjected to more abiotic stressors compared to trees 
grown in rural conditions (Sæbø et al. 2003). To avoid such 
an imbalance of light irradiance, plants have developed vari-
ous morphological and physiological mechanisms, such as 
leaf or chloroplast movement, ROS scavenging systems, dis-
sipation of absorbed light energy as heat, activation of cyclic 
electron flow and photorespiratory pathway (Takahashi and 
Badger 2011). Beside the aforementioned photoprotective 
mechanisms, ACNs, when localized in upper epidermis and 
mesophyll tissues, also constitute an effective sunblock, as 
reported for a different species, irrespectively to the fact that 
ACNs accumulate in the leaf mesophyll (Hughes and Smith 
2007; Hughes et al. 2014) or in adaxial epidermis (Hughes 
et al. 2007; Landi et al. 2013a, b; Tattini et al. 2017).

The capacity of ACNs to absorb a proportion of the yel-
low/green and ultraviolet wavelengths (the latter especially 
when ACNs are acylated), may indeed significantly reduce 
the light-triggered damages to PSII, and in particular that 
related to D1 repair and the oxygen-evolving complex 
(Miyao et al. 1995; Antal et al. 2009; Takahashi and Badger 
2011). Usually, under high irradiances, red-leafed individu-
als show lower level of other photoprotective pigments such 
as xanthophyll violaxanthin, antheraxanthin and zeaxanthin 
(VAZ), compared with green-leafed ones, which is consist-
ent with the idea that ACNs might partially compensate for 
the photoprotective role of VAZ pool (Cavender-Bares et al. 
1999; Verhoeven et al. 2005; Tattini et al. 2014; Logan et al. 
2015; Lo Piccolo et al. 2018; Renner and Zohner 2019). 
In other cases, similar VAZ level were measured in both 
red and green leaves under optimal conditions, but when 
plants were subjected to high light, a stronger increment 
in VAZ de-epoxidation state in green than red leaves was 
observed, which is supportive for an alternative rather than 
compensatory role of ACNs (Hughes et al. 2012). Support-
ively to either an alternative or compensatory role of ACNs, 

Fig. 1  Possible distribution of anthocyanins in leaf tissues of different plant species and their different role on the bases of their localization
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when an extra amount of red light (able to overpass the ACN 
layer) was supplied, ACN-equipped and ACN-less leaves 
were similarly photoinhibited (Pietrini et al. 2002). When 
ACNs are localized in the lower epidermis, their possible 
sunscreen role appears inappropriate, leading to the hypoth-
esis that ACNs localized in the lower epidermis may reflect 
adaxially-transmitted red light back to the mesophyll (Lee 
et al. 1979; Hughes et al. 2008). However, obtained results 
have failed to fully prove the functional significance of this 
trait, and further researches are needed (Hughes et al. 2008).

To date, only a few studies have investigated the perfor-
mance of green- versus permanent red-leafed tree species in 
response to abiotic stresses which typically occur in cities, 
especially in the harsh Mediterranean area. However, these 
studies demonstrated the capacity of ACNs to protect the 
leaves from excessive light, thereby supporting ‘the privilege 
of being permanently red’, under condition of abiotic stress. 
For example, Lo Piccolo et al. (2018) and Vangelisti et al. 
(2020) observed that in vulnerable stages of leaves (young 
and senescent leaves), a red-leafed cv. of Prunus cerasifera, 
which is widely used in urban environment, was less suscep-
tible to light excess than a green-leafed counterpart. In addi-
tion, Lo Piccolo et al. (2020a) observed that ACN presence 
ameliorates the performance of Prunus spp. in condition of 
limited water availability.

ROS prevention and scavenging

Abiotic stresses can consistently lead to an increase of ROS 
production over a physiological level in different cellular 
compartments, e.g., mitochondria and chloroplast, thereby 
promoting events of oxidative stress, oxidative burst and 
finally cell death (Foyer et al. 1994). Flavonoids, includ-
ing ACNs, with poly-hydroxy B-ring substitutions, have 
been found to act as powerful ROS scavengers in in vitro 
experiments (Neill and Gould 2003; Juadjur et al. 2015). 
However, it is still under debate whether or not ACNs can 
serve as ROS scavenger in vivo, given that ACNs would 
only have the possibility to scavenge cytosolic and vacu-
olar ROS (whilst chloroplast and mitochondria with their 
electron transport chains are the primary sites for ROS 
production) before being shuttle to the vacuole (Hernández 
et al. 2009). In favor of their ROS scavenging role, the fact 
that ACNs can scavenge vacuolar  H2O2, which, produced 
in other sites, can easily pass lipid bilayers and reach the 
vacuole which normally occupied more than 70% of a total 
cell volume (Mittler et al. 2004).  H2O2 is indeed more stable 
than other radical ROS, and therefore vacuolar ANCs are 
likely to have a pivotal role in counteracting the symplastic 
movement of ROS (Mittler et al. 2004), which is supportive 
for the theory of Yamasaki’s group (Yamasaki et al. 1996, 
1997). Accordingly, lower levels of  H2O2 were measured in 
red- than green-leafed Prunus during the last phase of leaf 

ontogenesis (Lo Piccolo et al. 2018). Besides the opinion 
about the scavenging role of ACNs, it is undeniable that 
the previous role as sunscreen compounds also results in 
reducing the amount of ROS that could be otherwise pro-
duced being that amount of light not intercepted by ACNs. 
Therefore, accepting the definition of an antioxidant as “a 
substance that, when present at low concentrations compared 
to those of an oxidizable substrate, significantly delays or 
prevents oxidation of that substrate” (Gutteridge and Hal-
liwell 1990), it emerges clearly the weak borderline between 
the classic dichotomy in ACN roles: sunscreens or antioxi-
dants (Landi et al. 2015).

Sugar buffering

The perturbation of plant metabolism by abiotic stressors 
can result in sugar accumulation, which, in turn, induces 
the sugar-promoted feedback inhibition of photosynthesis 
(Krapp and Stitt 1995; Paul and Foyer 2001; Holland et al. 
2016). In view of their nature, it has been proposed that 
ACN accumulation may represent an alternative sugar sink, 
thereby preventing or delaying the sugar-promoted inhibi-
tion of photosynthesis of plants subjected to abiotic stresses 
(Landi et al. 2015; Lo Piccolo et al. 2018, 2020a, b; Gould 
et al. 2018). Indeed, ACN and sugar metabolism are strictly 
interconnected, and sugar-promoted enhancement of ACN 
levels has been clearly demonstrated in previous experi-
ments (Solfanelli et al. 2006; Das et al. 2012; Lo Piccolo 
et al. 2018). In order to test this hypothesis in tree species, it 
was recently demonstrated that ACN biosynthesis represents 
a relevant C-sink in conditions of imbalanced source-to-
sink relationship induced by the effect of stem bark girdling 
(Lo Piccolo et al. 2020b). It has also been demonstrated 
that under drought, one of the main constrains for trees in 
Mediterranean cities (Sjöman et al. 2018), red-leafed Prunus 
plants were less affected than ACN-less individuals. The 
increase of ACNs in the first phase of water stress resulted 
in lower accumulation of soluble sugars in leaves of red than 
green individuals and correlated with a lower decline of PSII 
efficiency (Lo Piccolo et al. 2020a). The ACN enhancement 
was therefore proposed by the authors as a mean to both 
reduce the incident light and reduce the sugar-promoted 
feedback regulation of photosynthesis.

Senescence delay

Connected to the sugar-buffering role previously 
described, the C-sink exerted by ACNs may also offer the 
possibility to stressed plant to avoid the phenomenon of 
early senescence promoted by foliar sugar accumulation 
(Sami et al. 2016). The strict interconnection between 
sugar, ACNs and senescence has been well described in 
red versus green autumn leaves by different authors (Feild 
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et al. 2001; Hoch et al. 2003; Schaberg et al. 2003). In 
addition, a longer leaf life-span can increase the N resorp-
tion ability by the leaf, therefore reducing the loss of N 
due to earlier leaf fall (Feild et al. 2001; Hoch et al. 2003; 
Shi et al. 2017). Accordingly, Lo Piccolo et al. (2018) 
observed that accumulation of ACNs in older leaves of 
permanent red-leafed Prunus correlated with a delayed 
leaf senescence and a lower level of residual N into the 
leaves when compared to green-leafed individuals. This 
aspect can be particularly interesting in an urban envi-
ronment, given that red species could maintain the leaves 
for longer than other green deciduous species at the end 
of autumn, thus further increasing the aesthetic value of 
ACN-rich tree species.

Metal chelation capacity

Metal accumulation and toxicity represent another haz-
ardous risk for trees in an urban environment (Landi 
et al. 2020). Metal stress can induce ACN biosynthesis 
in a dose-dependent manner (Kumar et al. 1995; Chalker-
Scott 1999), but it remains yet to be elucidated in which 
way ACN may help the plant to cope with metal toxicity. 
Besides the photoprotective roles described above, ACNs 
possess a 3′,4′-O-dihydroxyl group in the B ring of their 
backbone, which have the capacity to form metal-ACN 
complexes (Fedenko et al. 2017). The occurrence of metal-
ACN complexes has been reported for different metals 
including W, Al, Cd, Cu, Ga, Fe, Mo, Mg, Zn (Fedenko 
et al. 2017 and reference therein). However, only Hale 
et al. (2001, 2002) tested this ameliorative role in vivo and, 
in addition, this capacity was proved for W and Mo, which 
are not among the most common metal pollutants in urban 
environments. The capacity of ACNs to bind metal ions 
can expedite their cytosolic sequestration, boosting their 
shuttle to the vacuole in coordination with glutathione, 
glutathione S-transferase and phytochelatins, which are 
common carriers for both ACNs and metals into the vacu-
oles (Landi et al. 2015). This would result in lowering 
their toxic impact to the cytosolic environment and pre-
venting the metal diffusion to other organelles. In addition, 
in case of epidermally-located ACNs, the sequestration 
of metal ions into the leaf epidermis represent a mean to 
avoid metal accumulation in more important tissues (e.g. 
mesophyll cells).

In view of the above discussion, permanent red-leafed 
species seem to be better equipped to survive in metal-
enriched soils, even though future researches are needed 
to better understand whether the metal chelation ability of 
ACNs exerts a relevant role in metal tolerance of ACN-
equipped tree species.

Possible argumentations against the use of red 
species in urban environment

Green means relax, red excitation

Besides the previous undeniable biochemical/physiological 
aspects which suggest red-leafed tree species as more suit-
able to counteract the stressful conditions of cities, there are, 
maybe, some possible argumentations and concerns related 
to the use of these species from different point of views.

Chromotherapy highlights that green, which represents 
the most present color in nature, is a restful color that 
inspires harmony. Green is associated with spiritual balance, 
can diffuse anxiety and helps us to keep calm and controlled 
(Garala et al. 2009). Conversely, red is often described as 
warm, vibrant, and intense. It is often seen as an exciting and 
even aggressive color able to stimulate blood pressure and 
nerves (Azeemi and Raza 2005). Based on the aforemen-
tioned statements, it seems conceivable that the use of red 
species should be limited. However, it should be considered 
that red can also evoke feelings of love and comfort. Red 
is often used to grab attention, particularly in advertising 
and traffic signage. In addition, purple color, which is more 
common in tree species than pure red, may evoke relaxation, 
comfort and calmness too (Kaya and Epps 2004).

The use of “red” or better anthocyanin-rich species has 
to be therefore carefully pondered with the typical green-
leafed trees in order not to create an unfavorable effect. For 
example, the foliage that is typical of North America’s and 
Canada’s autumn, appears as an amazing alternation of yel-
low/red/purple tonalities. Conversely, the only use of mono-
tone red species for an urban park would not be appreciable 
given that the aesthetic value of tree species is one of the 
most important ecosystem services exerted by urban trees. 
Anthocyanin-rich trees should be therefore used to alert the 
observer, using red trees to mark particular paths, or, alter-
natively, they should be carefully balanced to green species 
to confer a strongly appreciated dichromatic contrast to the 
scenery.

Constitutively red trees have been selected by humans; 
their use is against the natural plant evolution

Perhaps is sad to be admitted, but nowadays the most widely 
diffused plant species have been selected by humans for 
their own purposes. Trees species are not an exception, and 
especially in the context of the urban greening, the aesthetic 
value, rapid growth, and in some cases the stress tolerance 
should be key requisites for their selection. So that, besides 
many efforts which have been done, especially in the last 
decade, agriculture as well as urban greening are far to be 
oriented in maintaining the plant biodiversity and following 
the evolutionary criteria.
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Constitutively permanent red-leafed tree species have 
been selected by humans for their high aesthetic value. 
However, if we consider the phylogenetic evolution of the 
ACN pathway, it emerges that ACNs are old pigments (the 
genes of the ACN pathway are thought to date back 450 mil-
lion years to the first land plants) and this phenylpropanoid 
branch is present in all the angiosperm families (Campanella 
et al. 2014). Therefore, the human selection of red-leafed 
species have paralleled (and not contrasted) the evolution of 
ACNs and perhaps the leaf of the future will be transiently 
red for the majority of its ontogenetic cycle, especially in 
limiting environments.

The biosynthesis of ACNs is an expensive pathway 
and red species have consequently a reduced growth 
rate

As detailed above, ACN biosynthesis represents a relevant 
C-sink and requires energy investment by the plant to keep 
this pathway active (Lo Piccolo et al. 2020b). Under optimal 
conditions, a comparison of the growth rate of anthocyanin-
rich versus ACN-less individuals would be in favor of the 
green ones (Landi et al. 2013a). However, when green and 
red plants were compared in stressful condition (the most 
common situation in an urban environment), usually red 
species are able to compensate for their apparent inability 
to compete with the growth rate of green-leafed individu-
als (Tattini et al. 2014), and in most cases they even exhibit 
superior performances (Landi et al. 2013a). Though the 
previous statements were derived from herbaceous species, 
due the lack of this kind of investigation in tree species, it is 
conceivable that the presence of foliar ACNs may also ame-
liorate tree performances under unfavorable environmental 
cues for all the reasons mentioned in the section “Benefits 
of foliar presence of ACNs for tree species in urban environ-
ment”, which can be considered valid to both herbaceous 
of arborous species. Tree species seem therefore more suc-
cessful in a stressful and limiting environment as the city, 
especially in Mediterranean areas.

Conclusion and future perspectives

ACN-rich tree species represent a valid alternative, with 
an underestimated potential, to the most commonly used 
green species in urban environments. Future criteria for 
the selection of tree species should be improved in order 
to respond to the new challenges imposed by global cli-
mate change, which exacerbates the already harsh living 
conditions of our “leafed citizens”. The aesthetic value 
attributable to the presence of foliar ACNs, associated to 
capacity of these pigments to be helpful in accommodating 

the common abiotic stress (typical of Mediterranean cities) 
should attract the attention of urban greening operators 
and promote their use, which is nowadays only marginally 
considered. New researches are still needed to deepen the 
pivotal aspects related to the ecophysiology of these per-
manently red-leafed species in relation to different urban 
environments, in order to wisely select the most suitable 
species in view of their peculiar features.
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