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ABSTRACT: Study of the climate in the Mediterranean basin during different historical periods has taken on a
particular importance, particularly regarding its role (together with other factors) in the evolution of human settlement
patterns. Although the Roman age is traditionally considered a period with a favourable climate, recent studies have
revealed considerable complexity in terms of regional climate variations. In this paper, we compare the hydrological
change from speleothem proxy records with flood reconstructions from archaeological sites for Northern Tuscany
(central ltaly). We identify a period of oscillating climatic conditions culminating in a multidecadal dry event during
the 1st century Bc, followed by a century of increased precipitation at the beginning of the Roman Empire and
subsequently a return to drier conditions in the 2nd century Ap. The period of rainfall increase documented by the
speleothems agrees with both the archaeological flood record as well as historical flood data available for the Tiber
River, ca. 300 km to the south. These data also suggest a return to wetter conditions following the 3nd and 4rd

centuries AD. Copyright © 2020 John Wiley & Sons, Ltd.
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Introduction

Since the Neolithic Age, the Mediterranean has been the
cradle of ancient civilizations and its landscape has been
deeply modified by the interaction between natural factors
and human activities (Zanchetta et al., 2013; Anthony
etal., 2014; Fyfe et al., 2015, 2018; Bini et al., 2015; Bini et
al., 2018). Increasing evidence shows that, alongside
historical, social and economic factors, climate may have
played an important role in affecting the Mediterranean
populations (Kaniewski et al., 2010, 2012; Finné
et al., 2011, 2017; Schneider and Adali, 2014; Cremaschi
et al., 2016; Sadori et al., 2016). The role of climate in the
environment and in social development is rarely simple or
direct (Harper, 2017), and needs to be identified side-by-
side with other sources of evidence to establish firm
chronologies for climatic changes and archaeological data
(Mensing et al.,, 2015). However, it is often difficult to
compare archaeological and palaeoclimatic data because
they are obtained from different archives — often spatially
separated — and their chronologies cannot always be directly
reconciled. In particular, an unavoidable limitation char-
acterizing many age models obtained for different palaeo-
climatic records makes the comparison between archives
complex (Knapp and Manning, 2016) especially when
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decadal- to centennial-scale events are investigated (Finné
et al.,, 2011; Zanchetta et al., 2012a, 2012b, 2019; Bini
et al., 2019). However, careful selection of the best-resolved
archives can produce large geographical gaps in palaeocli-
matic reconstructions, reducing our ability to identify
regional climatic patterns (Bini et al.,, 2019; Finné
et al., 2019). In addition, highly resolved palaeoclimate
archives supported by precise and accurate chronologies
allowing comparisons of this type are rare and/or cover only
limited periods.

The Roman Age has been traditionally considered
a period of generally ‘benign’ climate (the so-called
Roman Warm Period (e.g. Lamb, 1995), or Roman Climatic
Optimum (RCO), 200 Bc — ap 150 (e.g. Harper, 2017).
However, recent and detailed investigations have shown
that this period is probably climatically complex and
regionally articulated (e.g. Biintgen et al., 2011; Dermody
et al., 2012; McCormick et al., 2012; Manning, 2013;
Margaritelli et al.,, 2016). Fundamental reviews by
McCormick et al. (2012) and Manning (2013) highlight the
paucity of palaeoclimatic data from continental Italy, which
represents an important gap that needs to be fulfilled,
particularly in the light of the richness of the region’s human
history.

Nevertheless, the number of higher resolution studies in Italy
has increased in recent vyears, particularly in terms of
chronological resolution and proxy interpretation (Regattieri
et al., 2014; Grauel et al., 2013; Margaritelli et al., 2016), but
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the records from continental Italy, if we exclude pollen (e.g. Di
Rita et al., 2018), remain scarce. By contrast, pollen suffers the
unavoidable problem of human impact on vegetation (Di
Pasquale et al., 2014; Fyfe et al., 2015, 2018), which makes
many pollen-based climatic reconstructions questionable
during periods of highly dense human settlements.

The increasing interest on climate variability during
Roman Period has been fuelled by historians wishing to
understand the growth and decline of the Empire
(Harper, 2017) and the significant implications this has for
the need to better understand the role of climate variability
on society, owing to current global warming (e.g. Biintgen
et al., 2011). However, most studies have focused on large-
scale reconstructions (e.g. Manning, 2013), while a more
detailed approach at local scales comparing palaeoclimate
and archaeological data to infer the impact of climate on
human settlements and landscape has rarely been at-
tempted. Therefore, our specific approach here is to
correlate local hydroclimatic conditions defined by proxy
records extracted from proximal natural archives to comple-
ment archaeological data to gain deeper insights into past
climate and its impact at the local scale. Specifically, we
discuss two speleothem records collected in two different
cave systems in the Apuan Alps of Central Italy (Fig. 1), a
region made famous for its marble exploitation since ancient
times (Bruschi et al.,, 2004), and its links with the
surrounding area, which was densely settled in the Roman
Age and connected to the urban centres of Luni, Lucca and
Pisa. Both records have been previously studied and
discussed (Drysdale et al., 2006; Zanchetta et al., 2007,
2014, 2016) and have highlighted millennial- to centennial-
scale palaeoenvironmental changes during the Holocene. In
this paper, we reconstruct hydrological variability in the
period between the Late Republican Period to the Late
Antiquity (ca. 200 Bc to 450 Ap; McCormik et al., 2012;
Harper, 2017) to evaluate the local expression of the so-
called ‘Roman Climatic Optimum’.

Site description
Geological and geomorphological setting

The Apuan Alps massif, which rises to ca. 2000 m above sea
level, forms the divide between the catchments of the Magra
River to the north-west and those of the Serchio River to the
north-east. Wide alluvial fans and a littoral alluvial plain
separate the massif from the Tyrrhenian Sea on the SW border.
From a geological point of view, the massif (Fig. 1) comprises
intensively karstified Mesozoic marbles and metadolostones
(Piccini et al., 2008). The massif is located in front of the Gulf
of Genoa, which is one of the most important centres of
cyclogenesis in the Mediterranean (Trigo et al., 2002), with the
Apuan massif acting as an orographic barrier for air masses, of
mostly North Atlantic origin, moving eastwards (Reale
and Lionello, 2013). This produces abundant precipitation,
which locally reaches 3000 mm a~' (Piccini et al., 2008).
Winter precipitation is strongly controlled by North Atlantic
Oscillation (NAO; L6épez-Moreno et al., 2011).

The two caves — Antro del Corchia and Buca della Renella —
and their speleothem records have been described in detail
elsewhere (Drysdale et al., 2004; Piccini et al., 2008; Baneschi
etal., 2011) and only general information is reported here. The
two caves are very different. Corchia is the higher, larger and
deeper cave of the two (ca. 54 km long and 1200 m deep).

The speleothem examined in this study (stalagmite CC26,
Zanchetta et al., 2007) was collected in the ‘Galleria delle
Stallatiti’, situated ca. 400 m below the surface at ca. 840 m
a.s.l. The chamber has a near-constant mean annual tempera-
ture of 7.5°C and receives a recharge of 2500/3000 mm a™'
over an elevation range of ca. 1200-1400m (Drysdale
et al., 2004; Piccini et al., 2008). Drip-waters in the chamber
have a near-constant oxygen isotopic composition (3'%0: ca.
—7.4%o; Piccini et al., 2008; Baneschi et al., 2011), which is
consistent with predicted values of rainfall at the estimated
recharge elevation (Drysdale et al., 2004). The carbon isotope
composition (3'C) of dissolved inorganic carbon (DIC) is

Figure 1. Location map. Red circles = archaeological sites investigated (each number corresponds to a different site listed in Table 1), yellow

circles = investigated caves.

Copyright © 2020 John Wiley & Sons, Ltd.

J. Quaternary Sci., 1-12 (2020)



HYDROLOGICAL CHANGES DURING ROMAN CLIMATIC OPTIMUM IN CENTRAL ITALY 3

similarly constant (ca. —4%o; Baneschi et al., 2011), and
reflects the low contribution from biogenic CO, due to the thin
vegetation cover, low mean annual temperatures and long
interaction with the marble bedrock, as well as changes in the
proportion of both closed vs. open-system conditions and
carbonic acid vs. sulphuric acid dissolution (Bajo et al., 2017).
Cave hydrochemistry (pH, ion concentrations, isotopic com-
position) shows very consistent values, suggesting well-mixed
waters and a stable and deep plumbing system (Baneschi
et al., 2011).

Renella Cave has its entrance at ca. 275 m a.s.l., measures
ca. 200m in length and has developed over a few tens of
metres (Zhornyak et al., 2011). Cave temperature is ca. 12 °C
(Zanchetta et al., 2016). Cave monitoring is in progress and
detailed data on long-term variability of drip waters remain
incomplete (Zanchetta et al., 2016). The record discussed in
this paper is from the RL4 flowstone, which was collected in
the upper chamber of the cave (Drysdale et al., 2006;
Zhornyak et al, 2011; Zanchetta et al., 2016). For RL4,
Drysdale et al. (2006) presented a multiproxy record (stable
isotope, trace elements and fluorescence properties) at low
resolution (1 mm). The resolution of the stable isotope record
was subsequently improved to 200 um (Zanchetta et al., 2016;
age model recalculated in the SISAL record of Atsawawaranunt
et al., 2018).

Historical and archaeological framework

During the pre-Roman age, the area was variously settled by
Etruscan and Ligurian populations (Paribeni, 1990; Bruni, 1998).
After the 3rd century Bc, owing to its high strategic value, the
region was the target of the expansionist programme of Rome.
The emerging Roman power sought to create the functional
structures necessary for its expansion overseas towards the west
and to guarantee access of the Apennine passages to the Po
Valley. The pro-Roman policy of the Etruscan city of Pisa
favoured Roman expansion in this district, which between the
3rd and 2nd centuries Bc provided Rome with the logistical bases
for the conquest of Sardinia and of the territories occupied by
Galli and Ligurians.

The Portus Pisanus (Kaniewski et al., 2018) and numerous
landings along the coast served by the Aurelia coastal road
(probably already joining Rome to Pisa by 241 Bc) were the
strategic points of strength of the territory. At the end of the same
century the Aurelia road extended to Portus Lunae at the mouth
of the Magra river (Fabiani, 2006). The continuous threat of
Ligurian raids prompted Pisa to grant the internal part of its
territory for the foundation of the Latin colony of Lucca in 180 sc.
After the defeat of the Ligurians, who had occupied the
northernmost part of its territory, Pisa was forced to accept the
foundation of the Roman colony of Luni in 177 sc (Fig. 1).

After their foundation, the territories of Lucca and Luni were
highly reorganized according to the centuriatio system, while
new interventions were carried out in the triumviral and
Augustan Ages (second half of the Tst century Bc to beginning
of the 1st century ap). During this period, the countryside of
Pisa, which had become a colony, was also centuriated
(Ciampoltrini, 1981, 2004; Pasquinucci, 1995). Data offered
by archaeological excavations and field surveys allow the
reconstruction of the settlement network, consisting of small to
large farms, luxury villas (Ciampoltrini, 1994), manufacturing
places and scattered necropoles.

Within this framework, the Auser and Arno rivers flowing
through Pisa played a strategic mediation role between the
trading sea and the vast hinterland, while agricultural and
manufacturing activities, including those related to the

Copyright © 2020 John Wiley & Sons, Ltd.

production of pottery and bricks, testify to the strengths of
the local economy (Menchelli, 2018).

Olive and wine cultivations were developed in the
territories of the three cities, according to the nature of the
soils (Pasquinucci and Menchelli, 1999; Fabiani and
Paribeni, 2012, 2016). Intensive exploitation of marble
developed in the Apuan massif from the Augustan Age.
Apuan marble was exported from Luni harbour to Rome
across the western Mediterranean basin (Paribeni and
Segenni, 2015). At Luni and its hinterland, the Middle and
the late Imperial Ages (3rd-5th centuries Ab) were character-
ized by considerable changes to the economy (Frova, 1989;
Gervasini and Mancusi, 2014; Gervasini, 2015). The trade in
marble came to an end during the 4th century ap, while the
few data currently available on the countryside suggest a
strong decrease in wine production and pottery and brick
manufacturing. At the end of the 4th century an earthquake,
detected by archaeological sources, destroyed the town; in
the aftermath, the early structures of the insula episcopalis,
the enrichment of a few domi and the lack of interest for the
destroyed public buildings testify to the birth of a new town,
very different from that of the early Imperial Age.

During the 2nd century Ap the urban centre of Lucca went
through a crisis (Abela, 1999), as indicated by the abandon-
ment and spoliation of many domi. This phase ended in the
3rd and 4th centuries ap, when new building programmes,
mainly focused on churches, were promoted. The inner city
witnessed a decrease in the number of buildings, with more
empty spaces and settled areas located next to the main
buildings (the bishop’s seat, the Lombard Duke’s palace, etc.).
A similar trend was recorded in the surrounding countryside,
with the end of many settlements and other structures (such as
roads and bridges), strongly connected to a general and
increasing deterioration of the hydrogeological conditions
(Ciampoltrini, 2004).

With the strong development of the towns in the Middle
Ages, the transformations of the urban centre of Pisa in the
Middle and Late Imperial Ages are not easy to understand
(Menchelli, 2003; Pasquinucci, 2003). However, there was an
abandonment of the northern suburbs and the progressive
occupation of the latter by cemeteries, both testifying to a
contraction of the urban space. Despite these factors and of a
progressive crisis within neighbouring settlements, trade along
the Auser and the Arno rivers continued on a large scale
throughout this period, at least until the 7th-8th centuries Ap.

Methods

Details of the U/Th dating and chronology of speleothems
CC26 and RL4 have been extensively discussed in previous
papers (Drysdale et al,, 2006; Zanchetta et al., 2007). The
CC26 age model has been substantially confirmed by Bajo
et al. (2017) based on a larger set of U/Th ages. However, the
low-resolution (1 mm) stable isotope record obtained by Bajo
et al. (2017), even if in general agreement with the isotope
records reported by Zanchetta et al. (2007), lacks sufficient
resolution to be useful for our purpose owing to the low
growth rate of the speleothem. Moreover, the low-resolution
time series, which has been obtained on a different section of
the speleothem, cannot be tuned unambiguously for this
interval at fine scale, with the high-resolution (200 um) record
of Zanchetta et al. (2007) ensuring an improving chronology.
However, it is reasonable to assume that the chronology of
Zanchetta et al. (2007) is less precise than that of Bajo et al.
(2017), but is similarly accurate.

J. Quaternary Sci., 1-12 (2020)
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Figure 2. Age model showing 95% confidence intervals for RL4 and
CC26 (Drysdale et al., 2006; Zanchetta et al., 2007). The red dashed
lines highlight the period discussed in the text.

Figure 2 shows 95% confidence intervals for the age model of
the RL4 and CC26 speleothem records. Average temporal
resolution for the interval considered for the Corchia and Renella
records is 13 and 7 years, respectively. The original U/Th
ages are referred to the year of measurement, but for a better
comparison with archaeological and radiocarbon data, both age
models are converted to years sp (i.e. before 1950), which are
equivalent to the calendar year sp in radiocarbon chronology.
The chronological interval discussed in this paper is the interval
where the age model of both speleothems has lower associated
interpolation errors.

The proxy records discussed (stable isotopes and trace
elements) are mostly used as palaeohydrological indicators of
cave recharge and then are compared to flood evidence
derived from archaeological data. Regarding the archaeologi-
cal data, the stratigraphy of several archaeological sites was
reviewed to identify evidence of historical floods. To identify
published archaeological data for the Roman Period, we
selected an area comprising the Lucca, Pisa, Luni and Versilia
plains, the Lower Valdarno and Garfagnana (Fig. 1). About 20
sites containing in their stratigraphy evidence of floods during
the Roman Period were selected for further evaluation.
However, sites with insufficient stratigraphic and chronologi-
cal information were discarded. A total of 14 archaeological
sites were finally selected for this study (Table 1). The
chronology of the alluvial phases was based on published
archaeological evidence (for details of the chronology for each
site see the references in Table 1), which usually relates to
pottery chronological successions (Manacorda, 2008). The
chronology has been defined by dating the lower and upper
archaeological layers comprising the alluvial phase or directly
on the material collected (presumably partially reworked) in
the alluvial sediments. For one of the selected sites (n. 3 Lucca
— ‘Miracolo di San Frediano’, Table 1) the occurrence of
alluvial events was inferred from ancient written sources.

A different order of problem is the identification of flooding
in archaeological excavations. This could be challenging,
owing to often-ambiguous evidence and to the different
sensitivity of different archaeologists to record this evidence.

Copyright © 2020 John Wiley & Sons, Ltd.

It is not always possible to separate single flood events from
longer phases of alluvial aggradation. Moreover, it is often
difficult to define with accuracy the chronology of flood
events/phases captured in archaeological stratigraphy. It is
important to consider the analyses of indirect data (e.g. land
reclamation interventions, centuriation recovery, raising of the
walking plans, regulation of the hydraulic network), which
may testify to conditions of hydrogeological instability,
possibly due to general climatic deterioration. Although these
data must be treated with caution, they are of decisive
importance in understanding not only the evolution of climatic
variations but also the anthropogenic reaction to these events.
The selected sites record 24 events in total, including alluvial
phases, single floods and selected anthropic hydraulic inter-
ventions (Table 1). Figure 3 shows the rationale used to
manage and integrate data from the palaeoclimatic and
archaeological sources.

Results and discussion

Palaeohydrological interpretation of speleothem
proxy records

For comparison, we show the high-resolution 'O record of
RL4 (Zanchetta et al.,, 2016) and the ‘mean anomaly index’
obtained from stalagmite CC26 (Regattieri et al., 2014) (Fig. 4).
This index was obtained by combining detrended, smoothed
and normalized Mg/Ca, 5'%0 and 5'C time series, assuming
that all three respond sensitively to hydrological variations and
in particular to changes in cave recharge (Regattieri
et al, 2014). This statistical treatment better highlights
significant hydrological changes, and is considered a more
robust palaeohydrological indicator compared to a single
proxy (Regattieri et al., 2014; Isola et al., 2019) for the deep
and complex cave system of Corchia. For Renella, we consider
the 8'®0 record as a good indicator of effective recharge over
the cave catchment, because the cave is shallower and
responds rapidly to changes in hydrology. For RL4, the
interpretation of 8'20 records (e.g. hydrological indicators) is
supported by low-resolution variations in the Mg/Ca molar
ratio and in the fluorescence properties of trapped organic
matter (Drysdale et al., 2006). Unfortunately, the resolution of
trace element and florescence series in the original paper of
Drysdale et al. (2006) is too low (ca. 50 years per data point
across the considered interval) to be compared with the high-
resolution isotope data of Zanchetta et al. (2016), and cannot
be used to produce a comparable ‘mean anomaly index’
similar to the CC26 record.

Speleothem 8'%0 in the Central Mediterranean is usually
related to the amount of precipitation (e.g. Bar-Matthews
et al., 1999; Bard et al., 2002; Drysdale et al., 2004; Finné
et al., 2017; Bini et al., 2019; Regattieri et al., 2018, 2019a),
with lower 8'20 values of speleothem calcite interpreted as
increasing precipitation, and vice versa. In this interpretation,
changes in cave temperature have a minor role (Drysdale
et al., 2004; Zanchetta et al., 2007, 2014), particularly during
the Holocene, when changes in temperature were quite small
(Marcott et al., 2013; Martrat et al., 2014). This interpretation is
strictly correct if no dramatic changes occur in the isotopic
composition of the source of the vapour (i.e. surficial sea
water), a case which cannot be assumed, for instance, during
glacial to interglacial transitions (e.g. Marino et al., 2015), or
during phases of increased freshwater runoff within the basin
(Bar-Matthews et al., 2000; Rohling et al., 2015). For the
Mediterranean region, the oxygen isotope composition of
other continental carbonates has been interpreted in a similar

J. Quaternary Sci., 1-12 (2020)
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Figure 3. The methodological approach applied in this work.

way (i.e. lower 3'0 values of carbonate indicate wetter
conditions, and vice versa). This is the case for pedogenic
carbonate (Zanchetta et al., 2000, 2017; Boretto et al., 2017),
lacustrine carbonate (Zanchetta et al.,, 1999, 2012; Roberts
et al., 2008; Regattieri et al,, 2017, 2019b), and land snail
shells (Colonese et al., 2007, 2010, 2014; Yanes et al., 2011;
Prendergast et al., 2016). However, different effects, notably
evaporation, can play different roles in defining the final
isotopic composition of carbonates in different environments.

An additional point to be considered is the timing of calcite
precipitation. The two caves have different plumbing systems
and at Renella the speleothem 3'2O signal could be skewed
towards the time of calcite precipitation vs. time of water
recharge. It is generally reasonable to assume that most of the
recharge for both caves occurs during autumn and winter,
when precipitation is higher (Piccini et al., 2008; Baker
et al., 2019). However, the large and well-mixed plumbing
system dampened inter-annual variability much less at the
shallow Renella than at Corchia, which was able to better
record long-term and smoothed trends.

Land use changes and deforestation during historical periods
may also affect the soil/epikarst system of the two caves via, for
example, increasing soil evaporation and changes in soil-water
residence time, as well as CO, productivity in the soils (e.g.
Fairchild and Baker, 2012). These can impact the speleothem
3'®0 and '*C record (e.g. Bar-Matthews et al., 2003). The use
of a multiproxy approach for CC26 buffers these influences. At
Renella, the very recent impact of quarry activity on the cave
catchment would have exerted a large impact on infiltration
waters. However, this is not observed in the monitoring data
for 3'%0, indicating that there is no a detectable signal of
evaporation (Zanchetta et al., 2016).

Given these potential differences, and the inherent limita-
tion of comparing two different age models not specifically
built for investigating this period (between 3000 and 1500
years Bp), the two records show some interesting patterns
(Fig. 4). In the first part of the record (between ca. 3 and
2.3 ka, ca. 1000 Bc to 350 Bc) there is evidence for three short

Copyright © 2020 John Wiley & Sons, Ltd.
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(multi-decadal) drying events centred at ca. 2.9 (ca. 950 Bc),
2.7 (750 Bc) and 2.5ka Br (ca. 550 Bc). Between the two
records these events are offset by ca. 50 years, which can be
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models in this section. However, the most striking similarity is
the drying trend observed since 2.3 ka, which peaks in both
records at ca. 2050 years 8p (within 100 Bc), representing ca.
20-30 vyears of driest conditions (Fig. 4). This period is
followed by a sharp transition to a century of wetter conditions
(ca. 2000-1900 vyears Bp, end of the 1st century Bc and 1st
century Ap), ending abruptly and leading to a new period of
drier conditions, even if not stronger than the events of the 1st
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century Bc. Since then the two records have shown some
significant differences. RL4 records the end of the drier
conditions at ca. 500 ap, followed by a long-term trend
towards wetter conditions. The end of the drier conditions for
the CC26 record definitively stops at ca. 300 Ap, and wetter
conditions are apparent with a peak at ca. 650 Ap. The
extremely slow growth for CC26 in this period and
the difficulties of precise dating for both records hamper the
possibility to synchronize the two records in the late period.

Integration of proxy record with archaeological
and historical data

The hydrological variability expressed by the speleothem
proxies in the historical framework shows that definitive
affirmation of Roman power over Northern Tuscany, and the
foundation and development of the main cities occurred
within a period of generally drier conditions, which were more
pronounced towards the end of the period (first half of the 1st
century Bc). Interestingly, the dry period followed by a wetter
one is consistent for this interval with a new 8'20 palaeohy-
drological record from speleothems from Rio Martino Cave in
the Mediterranean Alps (Fig. 5; Regattieri et al, 2019a).
However, this record for other periods shows some significant
differences.

At the beginning of the Common Era a prominent wet period
lasting about a century was recorded by the speleothem proxies,
followed by a new drier period in the 2nd century ap. Some
authors (McCormick et al., 2012) have reported that favourable
and exceptionally stable conditions prevailed across the Roman
Empire from ca. 100 Bc to ca. 200 Ap and, according to some
scholars, this probably fostered the Empire’s unparalleled
rise (e.g. Harper, 2017). These inferences are not supported by
the detail shown in our records, which instead suggest a
detectable change from dry to wet conditions occurring around
50 sc. It is important to stress that the climatic trends deduced
from the Apuan speleothems are not as prominent when
considering the whole Holocene variability (Drysdale et al., 2006;
Zanchetta et al., 2007, 2014; Regattieri et al., 2014).

Copyright © 2020 John Wiley & Sons, Ltd.
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In the period corresponding to the drying trend that
culminated in the 1st century sc, the alluvial plains of Luni
and Lucca were organized according to centuriation. This first
general organization of the landscape with centuriation during
the Roman Late Republican Age was followed by a second
centuriation agreed during the Triumviral and Augustan Ages.
This second centuriation then seems to have occurred during a
period of increasing rainfall. Systematic investigations in the
Lucca alluvial plain indicate an evident phase of flooding
between the two centuriations, with deposition of alluvial
sands (Ciampoltrini, 2004). A progressive demise of the Roman
management on the alluvial plain caused by long-lasting
socio-political turbulence of the Late Republican Period has
been suggested (Ciampoltrini, 2014), but a comparison with
the data derived from speleothems makes it reasonable to also
assume a connection with climatic deterioration.

This compelling archaeological evidence can be further
improved on a wider scale. Revision of the 14 selected
archaeological sites of Luni, Lucca, Pisa and the coastal plain
provides several lines of evidence for the second half of the 1st
century Bc to the 1st century Ap (Fig. 6; Table 1), which can be
interpreted as floods and/or phases of increased alluvial
sedimentation, even if such floods are also documented in
different historical periods. For example, evidence of alluvial
events is testified during the drier period by the so-called
‘Hellenistic shipwreck’ of S. Rossore (Camilli and Setari, 1st
century sc (Via Galluppi, site no. 10; Anichini et al., 2009; Le
Melorie 2005) and by long-lasting alluvial phenomena that
occurred between the 2nd and the very end of the 1st century Bc
(Via Galluppi, site no. 10; Anichini et al., 2009; Le Melorie, site
no. 13; Pasquinucci et al., 2008). Nevertheless, there was an
increase in the number of alluvial events between the second half
of the 1st century Bc and the end of the 2nd century Ap. At Lucca
and in its territory there is evidence of alluvial phases at the Orti
di San Francesco (site no. 4; Ciampoltrini, 2007), Botronchio (site
no. 7; Ciampoltrini and Andreotti, 1993) and Casa del Lupo (site
no. 6; Ciampoltrini, 2004); close to the last of these, the
anthropogenic response to these natural events is testified by a
land reclamation intervention, indicated by an amphora-shaped
structure at the site of Frizzone, Casa del Lupo (no. 5;
Ciampoltrini and Giannoni, 2009). At S. Rossore in Pisa, several
wrecks (no. 11; ships B, C, E, G and M; Camilli and Setari, 2005;
Camilli et al., 2006; Camilli, 2012) have been recorded for this
wet period. These single events reflect rainfall-related phenom-
ena, connected to the whole hydrographic basin of the Auser
River and possibly of the Arno River.

Alluvial phases were detected in the town’s territory at Via di
Gello (site no. 8 MappaGis, mappagis.cs.dm.unipi.it:8081/
mappa/mappa.phtml, data sheets 133 and 351) and at Via
Galluppi (site no. 10; Anichini et al., 2009). As already noted for
Lucca, amphorae structures were put in place in the northern
suburbs, along the Auser river course (site no. 9; MappaGis,
mappagis.cs.dm.unipi.it:8081/mappa/mappa.phtml, data sheet
169) to face any alluvial events.

Floods are related to specific meteorological events not
necessarily correlated to the wider year-round climatic
conditions normally captured by speleothem proxies; indeed,
flooding is not a measure of the overall rainfall regime, but an
extreme event. However, archaeological data are consistent
with the speleothem data in suggesting an increase in rainfall
from the late 1st century Bc to the 1st century Ap, despite
possible chronological offsets between the two records (Figs. 5
and 6). However, it is worth pointing out that flooding in the
Roman Empire may have been exacerbated by anthropogenic
activities, such as the devastation inflicted on mountain
and lowland forests (Aldrete, 2007; Harris, 2013), or even
centuriation itself. It cannot be excluded that centuriation may

Copyright © 2020 John Wiley & Sons, Ltd.

sometimes have conflicted with the delicate hydrogeological
systems of the environment where it had been introduced. It is
also important to consider that although the system favoured
an optimal water flow, it required continuous management:
non-constant or neglected maintenance would have led to
flow inefficiency, especially in conjunction with climatic
changes or flooding events.

The records of flood recurrence in the Tiber River in the city of
Rome (e.g. Aldrete, 2007 and references therein: Fig. 7) interest-
ingly mimic (within age errors) the general trend of wetter/drier
conditions described by the speleothem records between about
the 1st century Bc and the 2nd century ap and our archaeological
data (Fig. 7). The Tiber data indicate a particular increase in flood
frequency between about the 1st century Bc and 1st century AD.
The creation in 15 ap of the post of curator riparum et alvei
Tiberis (Dio Cass. LVII, 14; Svet., Aug., 37; C.LL. XIV, 4704a-c),
entrusted with cleaning of the Tiber banks and riverbed, reflects
the need to find an effective and long-lasting solution to the
recurring danger of flood events (Guaglianone, 2017). The
consolidation works of the Auser river banks, conducted in Pisa
during the Augustan Age by means of amphorae structures
(MappaGis, mappagis.cs.dm.unipi.it:8081/mappa/mappa.phtml,
data sheet 169), can be identified by public interventions, similar
to those of the Tiber River. Significantly, the scarce evidence of
alluvial events dating back to the 2nd century Ap, namely an
alluvial phase in the ager Lunensis (site no. 2; Shepherd, 1995)
and in the shipwreck H, F, N at Pisa, S. Rossore (site no. 11),
match with speleothem proxies, thus testifying to a period of drier
climatic conditions.

Regarding the climatic conditions through the middle and
late Imperial Age (200-450 Ap), archaeological data from the
study area highlight a new increase in alluvial events (Fig. 6).
Unfortunately, the archaeological and speleothem data cannot
be correlated in detail for this same period. The speleothem
data are in fact inconsistent, as Renella Cave is the only one
testifying to a new increase in humid climatic conditions
(Fig. 4). For example, single floods are recorded at Luni (site
no. 1; Durante, 2001) and in its territory (Montiscendi no. 2;
Shepherd, 1995) during the 4th century Ap.

The most convincing evidence for this trend are the several
shipwrecks of Pisa (site no. 11; Camilli, 2005, 2012; Camilli
and Setari, 2005; Camilli et al., 2006), dating back to the end
of the 3rd century Ap (shipwreck A), between the end of the 4th
and the beginning of the 5th (ships I, Q and L) and of the 5th
centuries AD (ship O). The wrecks reflect long-lasting alluvial
phenomena testified in the ager Pisanus by the progressive
waterlogging phase in the south-eastern sector of the
centuriated area (site no. 14; Pasquinucci et al.,, 1997). The
hydrogeological instability of the Arno River valley is indicated
by a single flood recorded at S. Ippolito di Anniano, dated
between the 4th and 5th centuries Ap (no. 12; Ciampoltrini and
Manfredini, 2005).

The long-lasting period of hydrogeological instability is
recorded in the ager Lucensis of the 5th century Ap at the site of
Botronchio (no. 7; Ciampoltrini and Andreotti, 1993), while
the dangers caused by the Auser river over time probably
forced the community to divert the river course during the 6th
century AD, as suggested by the so-called ‘S. Frediano’s
miracle’ (site no. 3). According to Gregorius Magnus (Dialo-
gues, lll, 1), the bishop of Lucca, Frediano, is likely to have
moved the dangerous river away from the city.

Possible synoptical-scale climate condition

The validity of the Tiber flood record based on historical
chronicles as a climatic indicator is debatable (see for instance
Aldrete, 2007 for a detailed discussion). Floods are generally
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recorded only when they create damage to properties and
injure people. By contrast, floods would seem to reflect the
occurrence of extreme events, which can be related to specific
synoptic climate conditions. For instance, in some European
regions flood frequency has been related to NAO phases
(Villarini et al., 2012 and references therein). Historical
reconstruction of the last 1000 years of the damaging
hydrological events in Peninsular Italy suggests that large
floods are strictly related to NAO status, with floods increasing
during periods of negative NAO (Diodato et al., 2019).
According to Zanchettin et al. (2008), the river discharge peak
of the Po River depends strongly on NAO conditions during
winter. Thus, our revision of archaeological and speleothem
data reinforce the climatic valence of the flood record from the
Tiber River, at least for the period considered, namely the end
of the 1st century Bc and Tst century Ap (Fig. 7).

Application of these data to the whole Mediterranean is not
possible, and it is beyond the scope of this paper to discuss the
extra-regional climate in detail. However, the conditions
recorded in the Apuan speleothems are mostly related to the
season of cave recharge (Bini et al., 2019; Isola et al., 2019),
which usually corresponds to winter (Piccini et al., 2008).
Thus, reduced precipitation during the Republican Period,
peaking in the 1st century Bc, should be related to a decrease
in the arrival of cyclones from the North Atlantic, and
consequently to a decrease in secondary cyclogenesis over
the Gulf of Genoa (Isola et al., 2019). However, a decline in
winter precipitation is related not only to reduced cyclogen-
esis, but also to a reduction in the amount of precipitation
generated by each single cyclone (e.g. Zappa et al., 2015).
Today, this situation is mostly related to a positive phase of the
NAO (Xoplaki et al, 2004; Lépez-Moreno et al., 2011),
whereas negative phases of the NAO give rise to a higher
frequency of cyclones and precipitation (Reale and
Lionello, 2013), and, as suggested by the data presented
here, to floods.

Concluding remarks

Speleothem records from the Apuan Alps indicate that
during the Roman Age the north-western part of Tuscany
experienced a period of oscillating climatic conditions, with
a particularly pronounced multidecadal dry event during the
1st century Bc. About a century of increased precipitation is
documented at the end of the 1st century Bc/beginning of the
Common Era, followed by a return to drier conditions during
the 2nd century ab. Our survey of archaeological data
indicates the occurrence of flooding in northern Tuscany,
which coincides, within chronological uncertainties, with
the wetter period inferred from speleothem data. Interest-
ingly, the Apuan speleothem records resemble the historical
record of floods in the Tiber River, suggesting a regional link
between the rainfall increase recorded by the speleothem
and the occurrence of floods. These conditions could
correspond to a persistent negative NAO index. Unfortu-
nately, it is not possible to extend the correlation between
speleothem records and archaeological data further due to
the increasing chronological disagreement between the
Corchia and Renella records. However, after a drier period,
a tendency towards wetter conditions can be generically
inferred towards late Antiquity, as also suggested by the
archaeological data. To better define the conditions in the
area after the 2nd century Ap, it is necessary to extend
the proxy record ad hoc by using newly recovered and
better dated speleothems.

Copyright © 2020 John Wiley & Sons, Ltd.
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