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Abstract: Plants are often exposed to unfavorable environmental conditions, for instance abiotic
stresses, which dramatically alter distribution of plant species among ecological niches and limit
the yields of crop species. Among these, drought stress is one of the most impacting factors which
alter seriously the plant physiology, finally leading to the decline of the crop productivity. Drought
stress causes in plants a set of morpho-anatomical, physiological and biochemical changes, mainly
addressed to limit the loss of water by transpiration with the attempt to increase the plant water
use efficiency. The stomata closure, one of the first consistent reactions observed under drought,
results in a series of consequent physiological/biochemical adjustments aimed at balancing the
photosynthetic process as well as at enhancing the plant defense barriers against drought-promoted
stress (e.g., stimulation of antioxidant systems, accumulation of osmolytes and stimulation of
aquaporin synthesis), all representing an attempt by the plant to overcome the unfavorable period of
limited water availability. In view of the severe changes in water availability imposed by climate
change factors and considering the increasing human population, it is therefore of outmost importance
to highlight: (i) how plants react to drought; (ii) the mechanisms of tolerance exhibited by some
species/cultivars; and (iii) the techniques aimed at increasing the tolerance of crop species against
limited water availability. All these aspects are necessary to respond to the continuously increasing
demand for food, which unfortunately parallels the loss of arable land due to changes in rainfall
dynamics and prolonged period of drought provoked by climate change factors. This review
summarizes the most updated findings on the impact of drought stress on plant morphological,
biochemical and physiological features and highlights plant mechanisms of tolerance which could
be exploited to increase the plant capability to survive under limited water availability. In addition,
possible applicative strategies to help the plant in counteracting unfavorable drought periods are
also discussed.
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1. Introduction

Plants experience continuous fluctuations of environmental conditions and are often exposed to
abiotic stresses, for instance shortage of available water, salinity, excess light, high/low temperatures
and nutrient imbalance, all leading to impairment of plant performance [1]. The capability of plants
to respond to abiotic stress is associated with their plasticity as well as the adaptableness of plant
traits to the fluctuating conditions of water availability [2]. Amongst these limiting abiotic factors,
drought (or water deficit) stress is extensively studied given that it is likely the main constraint for
crop productivity in many arid and semi-arid areas worldwide [3].

Water deficit occurs when the plant water requirement cannot be fully satisfied and this situation
takes place when the level of transpired water exceed the water taken up by the roots, which is
caused by inadequate precipitation, decreased ground water level or the retention of water by soil
particles [4,5]. As a result of water stress, plants respond with morpho-anatomical, physiological and
biochemical adjustments aimed at counteracting the loss of water with the attempt to preserve their
hydric status [2].

Being sessile organisms, plants have to face several adverse factors in natural environments,
and, for this reason, they possess numerous defense strategies and have evolved several resistance
mechanisms through which they cope with abiotic stresses [6]. Enduring severe water deficit periods,
which relies on plant-genotype-specific features, also depends upon stress intensity, duration, speed
and recovery effectiveness to regulate plant performance [7,8]. In the case of water scarcity, plants
need to respond quickly, thus virtually all biological functions are altered by water deficit conditions at
whole plant level [9,10]. Plants have to stimulate different strategies that benefit them to absorb water
through their roots and to uphold cell turgor, i.e., evade the water loss [11]. Declined frequency of cell
division and cell enlargement, root differentiation, foliage dimensions, shoot length, altered stomatal
movements, water and mineral nutrition association with decreased plant yield and water usage
efficacy are major outcomes of drought in plants [12]. Photosynthesis activity is decreased primarily
by closing of stomata, membrane injury and altered functioning of several enzymes, specifically those
which are associated with ATP synthesis [12,13]. Drought stress conditions also result in increased
generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which disturb the cell
redox regulatory functioning [8,14].

Plants that are able to tolerate drought stress for extended periods and sustain their vigor and yield
represent one of the foremost exploration fields in agriculture studies [15]. As detailed below, tolerant
plants may benefit from different features which allow them to tolerate better than others the effect of
water scarcity. For example, among morpho-anatomical features, a well-developed root apparatus
ensures the plant a deeper exploration of the soil thereby increasing the capability of water uptake [16].
Other physiological (e.g., rapid stomata closure and water use efficiency) and/or biochemical responses
(e.g., synthesis of osmolytes, aquaporins and a powerful antioxidant apparatus) may contribute in
increasing the drought tolerance of some plant individuals [17], thereby supporting the use of those
drought-tolerant genotypes/varieties.

Besides the exploitation of plant tolerant genotypes/varieties based on classic breeding selection,
some applicative strategies have also been applied to attempt to overcome drought effects in crop
species. For example, under controlled circumstances, regulated deficit irrigation may allow to obtain
positive results in plant growth, likely due to a significant overproduction of advantageous moieties
such as sugars, organic acids and antioxidant compounds [18,19]. In addition, foliar application of
some compounds (including those produced by drought-tolerant genotypes, which are supposed
to contribute to plant drought tolerance) may help plants better tolerate a condition of limited
water availability. Among these, brassinosteroids [20,21], salicylic acid [22], amino acids [22,23],
polyamines [24] and micronutrients (e.g., potassium and phosphorous) [25] are certainly the most
efficient with consistent results in different plant species. Knowledge of the morpho-anatomical,
physiological and biochemical mechanisms underlying drought tolerance (as discussed in the next
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sections) is crucial for conferring drought tolerance to major crops, in order to valorize marginal areas
(e.g., semi-arid environments) in which water availability is the major constraint for the plant growth.

2. Influence of Drought Stress on Plant Performances: From Morpho-Anatomy to
Biochemical Changes

Water deficit conditions stimulate several plant responses, such as morphological, physiological,
biochemical and molecular alterations, which ultimately result in disturbing plant functioning [26]
(Figure 1). As depicted in Figure 1, drought events limit plant performances in different developmental
stages. Limited water availability can indeed reduce the germination rate and the development of
young plants [27]. During the progression of plant growth, drought basically influences the plant water
relations, which in turn cause severe perturbation to the whole plant metabolism (at physiological,
biochemical and molecular levels), depending to the stress severity and duration [14,28]. Water deficit
conditions alter several activities of plant, but one of the main effects is the decline of photosynthetic
activity [29,30] and finally the plant yield [31,32]. During drought stress conditions, oxidative stress,
directly or indirectly generated in plants, is one of the main drivers of plant responses and results in
damage to cell membrane, altering membrane integrity, physiological and biochemical alterations
which lead to acute metabolic disorders and eventually alter the plant productivity [33,34].
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3. Drought Stress and Plant Growth

Drought stress is well recognized as a limiting factor which alters multiple aspects of plant growth
and development. Germination of seeds, health and coleoptile length are foremost for the plant
progression [36]. Seed germination is the primary aspect of growth which is sensitive to drought stress.
Noteworthy alterations are observed in the seed germination of a plethora of plant species, including
some of the most widely cultivated crops such as maize [37], sorghum [38] and wheat [39].

Visible symptoms of plant exposed to water scarcity in the initial vegetative stage are leaf wilting,
decline in plant height and interruption in establishment of buds and flowers [40]. Drought conditions
also limit the uptake of nutrients by the plants due to limited soil moisture, leading to decreased stem
length [41]. Shoot length was also reduced under water deficit conditions in Lathyrus sativus L. [42].
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In conditions of water deficit, plants seek to extract water from deeper soil layers by boosting their
root architecture [43]. Moreover, water availability is primarily recognized by roots, which in turn
regulates its growth and organization characteristics such as root length, spread, number and length
of lateral roots [44]. Roots are crucial for different biological activities and plant yield, for instance
nutrient accumulation and water absorption, and they are also involved in rhizosphere symbiotic
associations with other microorganisms. Drought stress escalated root length in Crocus sativus L. [45].
Thus, a healthy root apparatus provides the benefit for sustenance of the escalation of plant growth,
especially in the course of primary plant growth phase [46]. Escalation in root length is recognized as a
useful strategy to increase soil water retention and nutrient accumulation to enhance plant biomass
production [47]. Under water deficit, the plant root to shoot proportion generally improves, and,
subsequently, the plant biomass decreases substantially [48].

The leaf is the chief part of the plant where most of the photosynthetic products are synthetized.
The number of leaves decreased when subjected to water stress in Andrographis paniculate [49]. Optimal
leaf development and the maintenance of an adequate leaf area is vital for photosynthesis, which
in turn is the main driver of plant growth. Water stress causes reduction in leaf area, which results
in decreased photosynthesis, hence reducing the crop yield. Leaf area declined under water stress
conditions in Petroselinum crispum L. and in Stevia rabaudiana plants to achieve stability among the
water absorbed by roots and the water status of various plant parts [50,51]. Reduction in leaf area
is a drought avoidance strategy because declining leaf area results in a decreased water loss by the
process of transpiration and this reduction in leaf area is attributable to the inhibition of leaf expansion
by declined rate of cell division, which results in loss of cell turgidity [52]. Decrease in soil moisture
causes a parallel reduction of leaf water content, which, in turn, induces a decline of turgor pressure of
guard cells due to stomata closure [53]. Of note, the rate of premature leaf senescence is enhanced in
drought environments [17].

4. Drought Stress and Photosynthesis

Major consequence of water deficit in plants is the decrease or suppression of photosynthesis [54]
(Figure 2). Reduced leaf area, increased stomata closure and consequent reduced leaf cooling by
evapotranspiration increases osmotic stress leading to damages to the photosynthetic apparatus are
among the major constraints for photosynthesis [55,56]. Among these, the decrease in photosynthetic
process in plants under drought is mainly attributable to the decline in CO2 conductance via stomata
and mesophyll limitations [57]. Decrease in photosynthetic activity due to drought may also be due to
reduced ability of stomatal movement [58,59]. Declined activity of photosynthesis is triggered by the
loss of CO2 [60] uptake, whose drop has been shown to affect Rubisco activity and decrease the function
of nitrate reductase and sucrose phosphate synthase and the ability for ribulose bisphosphate (RuBP)
production. Supportively, CO2 enrichment eliminated many early responses of maize metabolites and
transcripts attributable to drought stress [61].

Water deficit also resulted in decreased leaf area per shoot, and, thus, modification in canopy
architecture, and this feature can alter gas exchange, water relations, vegetative growth and sink
development (e.g., fruits or grains) [62], altering, for example, berry sugar concentration in grape [63]
and biomass partition in maize (i.e., kernel number and 100-kernel dry weight decreased with increasing
water stress duration) [64].
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Farooq et al. [17]).

Chlorophyll content, which is of outmost importance for photosynthesis [65], is another
photosynthetic attribute strongly influenced by water deficit that has been recognized as a distinctive
indication of photo oxidation and degradation of chlorophylls [66]. For example, leaf chlorophyll
synthesis and chlorophyll a/b proportion in soybean is altered by drought stress [67]. Decline in
photosynthetic activity, amount of chlorophylls, loss of photosystem II photochemical efficiency,
alteration in stomatal movement and disturbance in water status of plants resulted in declined plant
productivity [68]. Among others, a major cause for decline in amount of chlorophyll due to drought
stress is the drought-promoted O2

− and H2O2, which results in lipid peroxidation and ultimately
chlorophyll degradation [69]. The decrease of plant development and yield in several plant species
under water deficit is often associated with decline in photosynthetic action and chlorophyll content
impairment [70]. Water deficit alters the action of photosynthetic moieties and chlorophyll pigments,
which ultimately resulted in reduced photosynthetic activities in Vigna mungo [71].

Drought stress induces a decreased net photosynthesis and also changes the plant carbon allocation
and metabolism, which ultimately results in energy dissipation and declined yield [72]. For example,
drought stress decreased the physiological metabolic disorders by suppressing the photosynthetic
products production and disrupting the carbon balance in soybean [16]. Drought stress also caused
a reduction in the abundance of several Calvin cycle proteins, including Rubisco downregulation
in olive [73]. Acute drought stress conditions also cause the damage to Rubisco enzyme and other
enzymes associated with photosynthesis and are responsible for the loss of photosynthetic pigment
content [74].

5. Drought Stress and Antioxidant Defense System

Most of the plant defensive system is devoted to contrast the adverse consequences of
drought-triggered ROS. In this context, a prompt, powerful and efficient antioxidant system is
of pivotal importance to provide drought tolerance [75]. This machinery involves enzymatic and
non-enzymatic detoxification moieties, which lessen and repair injury triggered by ROS. Enhancement



Appl. Sci. 2020, 10, 5692 6 of 19

of the antioxidant apparatus helps in ROS scavenging that decreases electrolyte leakage and lipid
peroxidation, therefore maintaining the vitality and integrity of organelles and cell membrane [76].

It is well recognized that drought induces oxidative stress by generating ROS, for instance O2
•−,

hydroxyl radicals (OH•), singlet oxygen (1O2) and H2O2 [77]. The proportion of ROS generation and
antioxidant enzyme activities regulates the cell redox state, thereby resulting in ROS control or cell
injury and cell death when ROS exceed the physiological levels [78]. Numerous studies conducted
under water deficit conditions found enhanced activities of pivotal antioxidant enzymes, namely CAT,
SOD, POD and APX [79]. Usually, tolerant species/varieties/genotypes have an enhanced antioxidant
enzymes activity in comparison to non-tolerant plants, which is supportive for their essential role in
drought tolerance, especially to control H2O2 and O2

•− production and diffusion in leaf tissues [80].
Production of O2

•− and H2O2 were controlled by superoxide dismutase (SOD), peroxidase (POX)
and catalase (CAT) action, whose activity was enhanced for example in drought-tolerant potato
genotypes [81]. Ascorbate peroxidase (APX) also participates as excess ROS scavenger (APX uses
ascorbate as a substrate to stimulate the conversion of H2O2 to H2O), and its activity is usually elevated
under stress conditions [82]. Alteration in APX activity in leaves is more common than in fibrous roots
because APX mainly occurs in the chloroplast and cytoplasm and is a crucial enzyme for scavenging
H2O2 in chloroplasts [83]. Activities of SOD, POD, CAT and APX were altered and played a key role in
protecting peony plants against acute water deficit [84]. The amount of non-enzymatic antioxidants
(ascorbic acid, reduced glutathione and α- tocopherol) and antioxidant enzymes (SOD, CAT and APX)
activities were simultaneously enhanced in Coleus plectranthus in drought stress conditions [85]. SOD,
CAT and POX enzymes activities were stimulated by limited water availability in Vicia faba [70]. Increase
of SOD, POX and CAT activities was observed in drought-tolerant genotype, in comparison to the
drought sensitive plants of faba bean [86]. The amount of enzymatic and non-enzymatic antioxidants
improved in drought tolerant plants under mild and moderate water deficit conditions [87]. CAT,
SOD, POD and APX activities increased in Adonis amurensis and Adonis pseudoamurensis subjected to
drought, indicating that improved functioning of these enzymes helps to lower the level of ROS and
mitigate the drought generated oxidative stress [88]. Water deficit boosted the levels of SOD and POD
in Vigna mungo and the authors concluded that increased levels of these enzymes stimulate tolerance
against drought stress and are vital to reduce its adverse effects [71]. Water deficit increased the CAT,
POX and SOD levels in leaves of Glycyrrhiza glabra L., which aimed at counteracting the spread of
H2O2 [89].

6. Drought Stress and Secondary Metabolites

Secondary metabolites are produced by plants in the attempt to respond to various environmental
stresses [90,91]. It is recognized that the biosynthesis of secondary metabolites is regulated by
environmental factors, for instance temperature, light regime and nutrient availability [92]. Improved
production of secondary metabolites is usually observed under water deficit conditions, which is
caused by reduction in biomass formation and destination of assimilated CO2 to C-based secondary
metabolites to avoid sugar-promoted feedback of photosynthesis (Figure 3) [93].
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Figure 3. Enhanced synthesis of secondary metabolites under drought stress. Light energy captured by
the photosynthetic machinery is considerably greater than the energy essential for the CO2 fixation.
Energy dissipation takes place by non-photochemical quenching and re-oxidation of NADPH + H+,
i.e., via xanthophyll cycle and C2 cycle. Endogenous CO2 level is low because of the escalated diffusion
resistance caused by closing of stomata. Hence, a smaller amount of NADPH + H+ is utilized in the
C3 cycle for the fixation and reduction of CO2, and, ultimately, a greater amount of energy has to
be dissipated. Protective activities such as non-photochemical quenching, C2 cycle and xanthophyll
cycle are boosted by feedback mechanisms; a number of e− is transported to O2 (Mehler reaction).
Generation of O2

•− ions further produce various ROS. Due to the stress-associated stimulation of SOD
and APX, detoxification of the O2

•− ions occurs and therefore results in reduction of generation of ROS.
Greater enhancement in the reduction potential, i.e., the ratio of NADPH + H+ to NADP+, elevates the
plants secondary metabolites synthesis (modified from Kleinwächter and Selmar [90]).

In Hypericum brasiliense, concentration of phenolic acids is considerably enhanced when grown
in water deficit conditions [94]. In two native sub species of Iranian Origanum vulgare, i.e., subsp.
gracile and subsp. Virens, the content of sesquiterpene (E) β-caryophyllene strongly increased by water
limitation [95]. Under mild and mild/severe drought, the content of oleanolic acid and betulin increased
in Betula platyphylla [96] and level of triterpenoid glycyrrhizin in Glycyrrhiza glabra [97]. The lignin
content was increased in bermudagrass Tifton-85, which is a variety of Cynodon dactylon L., under
drought conditions [98]. The flavonoids content was enhanced under stress conditions and high-water
deficit conditions improved the medicinal properties of Labisia pumila [99]. Phaseolus lunatus under
water deficit condition had an elevated level of cyanogenic glucosides [92]. In Lamiaceae family, the
content of essential oils declined in Lavandula latifolia and Salvia sclarea, whereas, in Mentha piperita,
Salvia lavandulifolia, Thymus capitatus and Thymus mastichina, the essential oil amount was enhanced
under drought conditions and the increase was attributable to a higher concentration oil glands due
to decrease in leaf area [100]. The amount of phenolics and flavonoids increased in Achillea species
against drought stress [76]. The content of phenolic acids simultaneously improved, while the level of
flavonoids declined in Achillea pachycephala [101].
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7. Drought Stress and Mineral Nutrition

Water deficit situations usually reduce the overall soil nutrient accessibility, root nutrient
translocation and ultimately lessen the ion content in various plant tissues [102]. Water deficit
conditions decreased plant potassium (K) uptake [103]. This decline in K was attributable to reduced K
mobility, declined transpiration rate and weakened action of root membrane transporters [103,104].
Decreased K amount was also found in drought-stressed plants of Malus hupehensis [105]. Resistant
genotypes of Triticum durum had the maximum amount of K and susceptible genotypes had the
maximum amount of sodium (Na) [69]. Genes encoding K transporters were inhibited by water
deficit [106] and inner K channels are stimulated by a protein kinase, CIPK23, which in turn cooperates
with calcineurin B-like calcium sensors. This K channel was inhibited in roots but activated in leaves
of grapevine [107]. Leaf nitrogen (N) level did not change in drought-stressed Mentha piperita, Salvia
lavandulifolia, Salvia sclarea and Thymus capitatus, whereas, in Lavandula latifolia and Thymus mastichina
plants, N content decreased while leaf phosphorus (P) level reduced in all species except S. sclarea whose
concentration remained the same [100]. This reduction in N was considered as the main responsible
factor for photosynthesis decline and leaf senescence [108]. There was a significant reduction in leaf P
amount in Ocimum gratissimum [109] and decline in K level in Thymus daenensis under water deficit
conditions [110]. K level also decreased in Ocimum basilicum and Ocimum americanum plants subjected
to limited water availability [111]. Principally, decrease of K amount occurs in leaves because water
scarcity disturbs stomata movement and guard cell turgidity, which results in decreased photosynthesis
and, finally, the plant biomass production [112]. Drought-stress conditions increased the accumulation
of manganese (Mn), molybdenum (Mo), P, K, copper (Cu), calcium (Ca) and zinc (Zn) in soybean [113].

8. Plant Tolerance Mechanisms Against Drought Stress to Increase Crop Tolerance: How to
Exploit These Mechanisms to Increase Crop Tolerance

The intimal meaning of drought tolerance or drought resistance is still under debate. It is
conceivable that water-saving plants mainly refer to the effective use of water resource in the process
of growth and development of plants, thereby increasing crop water use efficiency (WUE) [114].
WUE is defined as the economic production per unit water consumption and it may or may not
be related to drought resistance [115]. On the other hand, the main accepted definition of drought
resistance is the ability of an individual to survive or grow in a water-stressed environment due to
dehydration avoidance, dehydration tolerance or drought recovery, where dehydration is considered
as the progressive loss of water content in plant tissue [115]. Discerning between drought tolerance
or drought resistance can be very complex and is out of the scope of the present review, as there are
already excellent papers dealing with this topic [116,117]. Therefore, in the next paragraphs of the
present review, plants able to tolerate drought stress conditions better than others are referred to as
“tolerant” without any distinctions between drought tolerant or drought resistant.

Plant drought tolerance encompasses alterations at morphological, biochemical and molecular
levels (Figure 4). Exhibition of single or multiple tolerance factors governs the plant capability to
survive under adverse drought conditions. From an applicative point of view, an in-depth knowledge
of these mechanism can be exploited to select crop species/varieties/genotypes with a lower degree of
sensitivity to limited water availability. Below, physiological, biochemical and molecular mechanisms
which allow tolerant plants to tolerate better drought conditions are described with the attempt to
propose some of them as suitable features for crop selection in the context of reduced water availability.
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8.1. Morphological and Biochemical Mechanisms Involved in Drought Tolerance

Plants survival to drought encompasses two main strategies: drought avoidance and drought
tolerance [53]. Plants have adopted several strategies to increase their drought tolerance at different
levels, morphological, physiological, biochemical, and molecular. Conversely, some plant species
avoid water deficit situations by accomplishing, for example, their life cycle before or after a drought
period while some other plants displayed adaptations to escalate water absorption and decrease water
loss to circumvent its adverse consequences [1].

At the morphological level, root is one the major drivers of water; therefore, the root size,
its progression rate and density and root proliferation are important features which prompt plant
responses to drought stress [5]. Plants with a deep root organization and a perennial development
system showed more ability to cope with drought in comparison to plants with shallow-root system [119].
In view of the above, the selection of genotypes with a more developed root apparatus resulted in
increased plant yield, as demonstrated for example in rice seedlings [120] and tobacco [121].

When drought stress occurs at initial phases of plant growth, drought-avoidance plants gradually
change to succulent types or develop advanced drought tolerance strategies such as generation of
compatible solutes, enhancement of antioxidant apparatus and other physiological responses aimed at
increase the water use efficiency [122]. Satisha et al. [123] demonstrated indeed, that selection of grape
varieties with drought tolerance should follow the analyses of water use efficiency increased for example
by the proper selection of rootstocks. Plants avoid water loss by stomata closure, thus decreasing
evapotranspiration and increasing water use efficiency [124], therefore stomata regulation is of outmost
importance in increasing WUE. Drought tolerance, water use efficiency and K+ content have close
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associations in plants as a sufficient level of K+ can improve the plant total dry mass and photosynthetic
rate; K+ also regulates the SOD enzyme activity to mitigate the cell membrane injury which is caused
by drought-triggered ROS [125]. Besides stomatal movement, drought stress may promote changes of
leaf morpho-anatomical traits including vascular bundle per unit leaf area [126], stomata density and
leaf thickness [127]. For leaf thickness, especially palisade parenchyma could contain larger numbers
of CO2-fixation sites [128]. On the other hand, increases of epidermis thickness represent a way to
contrast water loss under water limitation and both palisade and epidermis thicknesses can be used to
select more tolerant olive genotypes [128]. However, despite drought-promoted morpho-anatomical
traits, biochemical limitations might have a greater impact on plant performances [129].

At the biochemical level, plant hormones, secondary metabolites and other key molecules such
as carbohydrate, amino acid and polyamines play crucial roles in stress tolerance mechanism and
improving the capability of plant adaptation by altering their membrane stabilization, osmoregulation,
ROS scavenging, lessening leaf area and its abscission, promoting root development and reducing ion
leakage [130]. Osmolytes accumulation is essential for osmo-protection and osmotic adjustment against
water deficit conditions which can lead to loss of cell turgor and dehydration. Among others, proline
acts as an important signaling moiety against drought stress to stimulate mitochondria functioning and
alter cell proliferation, stimulating particular drought stress recovery genes [131]. Proline accumulation
helps to maintain membrane integrity by diminishing lipids peroxidation by defending cell redox
potential and declining ROS level [132]. It has been shown that plants which accumulate higher levels
of proline exhibit higher rates of plant survival (Triticum aestivum) [133], biomass production [134] and
grain yield [135]. Similarly, genotypes which accumulate higher level of glycine betaine [136], mannitol
and other non-structural carbohydrates [137] have greater drought tolerance. Likewise, trehalose under
drought stress aids to stabilize macromolecules such as lipids, protein and other biological moieties
to enhance photosynthetic functioning, thereby conferring drought tolerance [138,139]. Besides the
selection of osmolite-overproducing genotypes/varieties, another promising strategy is the exogenous
supplementation of these compatible solutes, which have exerted positive results in different crop
species (for a review, see [140]).

Increased antioxidant defenses also assist to increase drought tolerance by defending plants
from oxidative stress triggered by limited water availability (see Section 5). Therefore, selection of
varieties/individuals with an enhanced antioxidant apparatus allow to select individual with greater
possibility to survive and perform better in water-limiting conditions, e.g., in peanut [141] for which
the enhanced activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase were
essential to plant drought tolerance. Shamin et al. [142] also observed that higher antioxidant capacity
protects photosynthetic activities in drought tolerant tomato genotypes. In sugarcane, the tolerant
genotype RB867515 exhibited a powerful antioxidant apparatus when compared to the more sensitive
RB855536 [143], which was essential to tolerate prolonged drought.

8.2. Molecular and Phytohormone-Mediated Signaling Mechanisms of Drought Tolerance

Molecular responses to adverse stress conditions involve highly regulated genes
and signal transduction processes that aid plants to confront the stress conditions.
C-repeat/dehydration-responsive element binding factors (CBF/DREB), mitogen-activated protein
(MYB), cup-shaped cotyledon CUC, no apical meristem NAC TFs and zinc-finger proteins (ZFPs) are
recognized as significant moieties in conferring plant drought tolerance [144]. GsZFP1 gene improved
Medicago sativa drought tolerance, suggesting that the GsZFP1 is effective to promote drought tolerant
plants in genetic engineering breeding practices [145]. The overexpression of SNAC1 in Gossypium
hirsutum elevates its ability to cope with water deficit and also escalates its root growth, which
shows that bigger roots are useful in drought resistance breeding [146]. BdWRKY36 gene stimulated
transcription of stress-related genes, reduced electrolyte leakage, decreased ROS level and elevated
chlorophyll amount, plant water status and antioxidant enzyme activities to enhance the drought
tolerance [147]. MpCYS4 boosted closing of stomata, triggered the transcription activity of abscisic acid
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(ABA) and water-deficit-associated genes to confer drought tolerance and was associated with ABA
induced stress signal transduction [148]. Late embryogenesis associate (LEA) gene expression declined
photosynthetic activity and boosted the plant antioxidant defense system to improve drought stress
tolerance in three Linderniaceae species differing in desiccation tolerance [149]. In drought-tolerant
Malus domestica, the foremost stimulatory strategy for high water use efficiency involves maintenance
of C3 cycle activity by enhancing the function of photosynthetic enzymes, alleviating e− transfer,
diminishing ROS amount by controlling the photosynthetic e− transport chain, C2 cycle and ROS
mitigation ability to inhibit photoinhibition and improving photosynthetic activity [150].

Against water deficit stress, resulting signal transduction induced the generation of different
constituents including phytohormones to respond and adapt to drought stress. ABA is useful
in plant drought tolerance by triggering diverse signaling mechanisms [151]. Beside stimulating
stomatal movement, root architecture and regulating photosynthesis, ABA-induced genes encoding
drought-related proteins such as dehydrins, ROS-detoxifying enzymes, regulatory proteins and
phospholipid signaling enzymes can improve drought stress tolerance [152]. Improved amount of ABA
induced a signaling pathway in guard cells which results in outflow of guard cells K+ and reduced
turgor pressure, ultimately causing stomata closure [44,153]. ABA mitigated drought stress and
increased the wheat tolerance ability by improving stem lengths and plant biomass, declining the level
of H2O2 and malondialdehyde (MDA) [154]. Increased level of cytokinin amount in xylem sap induced
stomata opening by diminishing its sensitivity to ABA [155]. Jasmonic acid (JA) synthesis-related
genes were stimulated in the overexpressing lines of VaNAC26 which increased ROS scavenging
and stimulated stomata closure and root growth, thereby promoting higher drought tolerance [156].
JA enhances plants drought tolerance by stimulating root growth, decreasing level of ROS and
promoting stomatal closure [157]. Auxin regulates root development, functioning of ABA related
genes and ROS metabolism to improve drought-tolerance [158]. Ethylene mediates synthesis of guard
cell antioxidant flavanols in an EIN2 dependent manner and adversely affects stomata closing by
suppressing drought mediated ROS formation [159], thereby resulting in another possible target for
genetically engineered plants tolerant to drought.

In view of the above, obtaining transgenic plants is a promising approach to improving drought
tolerance traits in a shorter time as compared to classical breeding programs. However, in view of the
legal limitations which exist to cultivate transgenic plants in field, it remains arguable whether or not
transgenic plants produced under controlled conditions to enhance drought tolerance really perform
in field experiments in which other confounding variables may occur. Thus, much more has to be done
from this point of view to establish the real value of the transgenic approach in conferring drought
tolerance. For this goal, it is essential for environmentally-controlled experiments to be validated in
long-term field experiments, thereby reducing the real advantage between the genetic approaches over
the classical breeding.

9. Conclusions

Drought is a widespread adverse limiting factor which alters various characteristics of plant
growth, physiology and metabolism. Timing, duration, severity and speed of growth are important
factors to be considered in the attempt to select drought-tolerant species in particular environments.
Drought stress negatively affects various biological processes of plants, from the embryo phase to
the reproductive and maturity phases. Drought stress affects plants morphological, physiological,
biochemical and metabolic pathways, ultimately declining plant productivity. The drought tolerance
strategies adopted by plants include several biological mechanisms at cell, organ and entire plant
levels, when stimulated at various phases of plant growth. Water loss declined by improving stomatal
functioning, elevated water transport by emerging bigger and deeper rooting structures and production
of compatible solutes. ROS scavenging by antioxidant defense system, maintenance of membrane
integrity, usage of precise plant genotypes, treatment with plant growth regulators, production of
compatible solutes, stress-related proteins and aquaporins activity are also helpful in generating
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drought tolerance in plants. Selection of individuals with increased water use efficiency, enhanced
antioxidant apparatus and production of key osmolites and secondary metabolites represent some
possible promising strategies to obtain higher drought tolerance plants. In addition, exogenous
supply of compounds which are able to promote the drought tolerance in plants could be exploited in
water-limiting environments. Biotechnological strategies should also be taken into consideration to
generate transgenic plants able to tolerate water scarcity, although their validation cannot precede real
field experiments.
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