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Abstract: The plant-Trichoderma-pathogen triangle is a complicated web of numerous processes.
Trichoderma spp. are avirulent opportunistic plant symbionts. In addition to being successful
plant symbiotic organisms, Trichoderma spp. also behave as a low cost, effective and ecofriendly
biocontrol agent. They can set themselves up in various patho-systems, have minimal impact on
the soil equilibrium and do not impair useful organisms that contribute to the control of pathogens.
This symbiotic association in plants leads to the acquisition of plant resistance to pathogens, improves
developmental processes and yields and promotes absorption of nutrient and fertilizer use efficiency.
Among other biocontrol mechanisms, antibiosis, competition and mycoparasitism are among the
main features through which microorganisms, including Thrichoderma, react to the presence of other
competitive pathogenic organisms, thereby preventing or obstructing their development. Stimulation
of every process involves the biosynthesis of targeted metabolites like plant growth regulators,
enzymes, siderophores, antibiotics, etc. This review summarizes the biological control activity exerted
by Trichoderma spp. and sheds light on the recent progress in pinpointing the ecological significance
of Trichoderma at the biochemical and molecular level in the rhizosphere as well as the benefits
of symbiosis to the plant host in terms of physiological and biochemical mechanisms. From an
applicative point of view, the evidence provided herein strongly supports the possibility to use
Trichoderma as a safe, ecofriendly and effective biocontrol agent for different crop species.

Keywords: abiotic stress tolerance; antagonism; antibiosis; biocontrol; fungi; mycoparasitism;
pathogen; symbiosis

1. Introduction

It is predicted that by 2050, the world’s overall population will reach 9.1 billion people
approximately. Therefore, to feed this increasing world population, a raise of about 70% in agricultural
food production is necessary [1]. The substantial increase in food grain production helped in meeting
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the world food security needs, but problems like global warming, environmental pollution and
population explosion has pushed plants towards various kinds of biotic and abiotic stresses which are
responsible for yield loss to a large extent and it is an issue of great concern for the wellbeing of our
future generations. Biotic stress factors involve fungi, bacteria, virus, nematodes weeds, and insects,
which cause a yield loss up to 31–42% [2]. Among them, fungal pathogens are the most severe limiting
factor for crop production worldwide. Greater than 10,000 spp. of fungi are considered as responsible
for a plethora of plant diseases. Consequently, chemical fungicides are still employed injudiciously
as a primary means of disease control. These chemicals are not only expensive, but their application
results in the build-up of harmful level of toxins in human beings and in our ecosystem [3,4].

Moreover, the indiscriminate use of fungicides compels the pathogens to undergo genetic
mutations which are eventually ascribed to the selection of fungicide resistant biotypes. For instance,
Venturia inequalis [5], Phytophthora infestans [6], Colletotrichum musae [7] and Colletotrichum gloeosporioides,
Diplodia natalensis, Phomopsis citri [8,9] turn resistant to dodine, metalaxyl, benomyl and benzimidazole,
respectively. Recently, agronomist and commercial sectors have shown keen interest towards the
development of ecofriendly and cost-effective strategies for plant disease management [10].

Biological control mechanisms are contemplated as significant measures for disease management
because chemical fungicides adversely affect other non-target organisms [11]. There are several bodies
of evidence which support the fact that some microorganisms cause growth inhibition of pathogenic
spp. by impairing their metabolisms and/or establishing a parasitic relationship [10]. Additionally, the
application of biological control agents (BCAs) with reduced concentrations of chemicals stimulates
disease suppression in a similar manner to high doses of chemical fungicide treatments [12]. Around
90% of fungal biocontrol agents against pathogenic microorganisms belong to different strains of
Trichoderma [13]. Trichoderma was isolated for the first time in 1794 from soil and decomposing organic
matter [14]. Throughout the world, currently greater than 60% efficacious bio-fungicides are obtained
from Trichoderma [15]. For example, in India approximately 250 Trichoderma-derived bio fungicides
products are employed, but in comparison to biological control, Indian farmers are still relying on
synthetic chemical fungicides to a greater extent [16].

Different strains of Trichoderma (telomorph Hypocrea) belong to fungi imperfecti as they do not possess
any known sexual stage in their life cycle [17]. These fungi are rapid colonizers, invasive, filamentous,
opportunistic, avirulent and exhibit a symbiotic relationship with plants. In pathogen-contaminated
soils they not only improve plant growth but also inhibit pathogen growth through several antagonistic
mechanisms [18–20]. Trichoderma exhibit antagonistic behavior against several phytopathogenic
organisms, including bacteria, nematodes and especially fungi, by inhibiting their growth either by
direct interactions (e.g., hyperparasitism, competition for nutrient and space, and antibiosis) [21]
or indirectly by improving plant growth and vigor and enhancing stress tolerance, active uptake
of nutrients and bioremediation of contaminated rhizosphere, as well as providing plants several
secondary metabolites, enzymes and PR proteins [22].

2. Trichoderma-Plants Interactions

In recent years, Trichoderma has acquired high importance because of its fungicidal and fertilizing
potential. In exchange for sucrose from plants, fungi exert numerous advantageous influences
on plants. Among them should be mentioned the induction of rapid plant development and
production, an increase in nutrient absorption, rhizosphere modification and tolerance improvement
to both biotic and abiotic stresses (Figure 1) [13,20,23]. Trichoderma is attracted by chemical signals
released by a plant’s root. The initial steps of symbiosis establishment involve attachment and
penetration and colonization of Trichoderma within the plant roots. Plant root anchoring is facilitated by
cysteine-rich proteins known as hydrophobin, e.g., TasHyd1 and Qid74 hydrophobins were obtained
from T. asperellum and T. harzianum, respectively [24,25]. After successful attachment, root invasion is
promoted by emission of expansin-like proteins. They exhibit cellulose binding modules as well as
express endopolygalacturonase activity [26,27]. Furthermore, successful penetration of Trichoderma
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is followed by a rapid colonization of root tissues, which is achieved by lowering plant defenses,
such as phytoalexin production, as previously observed in Lotus japonicus roots during T. koningii
penetrations [28]. Moreover, in pathogen contaminated soil, Trichoderma spp. cooperate with other
beneficial microbial populations, improving plant growth and survival [29,30].
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Figure 1. Depicts pictorially the impacts of Trichoderma spp. on plants in rhizosphere. Presence of
Trichoderma improved the plant growth and development at physiological and biochemical levels.
Further, Trichoderma spp. raised the plant resistance towards several biotic as well as abiotic stresses
through multiple adaptive mechanisms.

2.1. Impacts on Plant Morphology

A lot of evidence indicates that the application of Trichoderma spp. to plant rhizosphere promotes
plant morphological traits such as root-shoot length, biomass, height, number of leaves, tillers, branches,
fruits, etc. [31,32]. For instance, inoculation of soil with T. atrovirde enhanced root hair numbers as well
as lateral roots in A. thaliana [33]. Similarly, application of T. harzianum to cucumber roots increased
biomass [34] and lateral root formation [35]. Likewise, application of T. longipile and T. tomentosum
significantly enhanced the total leaf area as well as fresh weight in cabbage seedlings as compared to
untreated plants grown in a greenhouse [36].

2.2. Impacts on Plant Physiology

It has been proven that Trichoderma spp. positively regulates several physiological processes
in plants such as photosynthesis, stomatal conductance, gas exchange, nutrient absorption and
assimilation, water use efficiency, etc. As previously described, Trichoderma spp. improved both
root growth and the uptake of mineral nutrients from soil. Trchoderma spp. treatment significantly
improved Mg uptake, a key chlorophyll constituent also involved in catalyzing enzymatic activity
as well as in regulating genes engaged in photosynthesis. Moreover, in rice plants treated with
Trichoderma, the photosynthetic rate (three-folds), stomatal conductance (three-folds) and water use
efficiency (two-folds) were significantly stimulated in comparison to plants treated with the classical
NPK (Nitrogen, Phosphorus and Potassium) fertilization [37]. In addition, treatment of rice plants
with T. harzianum increased water holding capacity, enhanced drought stress resistance and delayed
plant senescence phenomenon [38]. A similar senescence delay was observed in rice after application
of Trichoderma spp. [39].
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2.3. Impacts on Nutrient Solubilization and Absorption

Roots of Trichoderma-treated plants have exhibited a higher ability to explore the soil and an
improved uptake of minerals. According to Harman et al. [40] different strains of Trichoderma emit
several acids such as coumaric, glucuronic and citric acids, which assist in the discharge of phosphorus
ions, which seem to be inaccessible to plants in most soils [41]. The presence of T. harzianum strain
1295-22 in soil increases the availability of P as well as Fe and Zn in liquid medium [42]. Similarly,
application of strain T-203, also known as T. asperelloides, enhanced the available amount of Fe and
P in the rhizosphere to an amount of 30% and 90%, respectively. Moreover, root and shoot growth,
in response to Trichoderma inoculation, leads to an increase of Cu, Na and Zn uptake as well as
other micronutrients [43]. Iron deficiency in alkaline soil is a major drawback for crop production
in agriculture. The potential ability of Trichoderma for siderophore production can be used to cope
with this problem. It has been reported that the application of T. asperellum (T-6) to cucumber
roots increased Fe2+ and siderophore content in soil as well as the activity of Fe2+ and Fe3+ chelate
reductase [40]. Furthermore, [44] Colla et al. [44] reported that two kinds of siderophores (hydroxamate
and catechol) were produced by the MUCL45632 strain of T. atroviride. These studies highlight that
Trichoderma application in soil assists the plant in reduction of Fe3+ to Fe2+, which consequently boosts
its solubilization and uptake.

2.4. Yield Improvement

Treatment with different species of Trichoderma guarantees high yield production in the case of crops
like mustard, wheat, corn, tuberose, sugarcane, tomato, okra, etc. [45–50]. Similarly, seed biopriming
with Trichoderma spp. spores substantially improve crop yield in greenhouses conditions [51]. Likewise,
T. harzianum and T. viride treatments applied to marigold, petunia and verbena induced a significant
increase in the number and weight of the flowers [52]. Moreover, treatment of chili seeds with
T. harzianum IMI-3924332 enhances the germination rate [53].

2.5. Impacts on Abiotic Stress Tolerance

Being sessile organisms, plants are frequently exposed to various abiotic stresses. Inoculation
of soil with different strains of Trichoderma improves plant growth and reproduction under stressful
conditions. For example, biopriming of rice with T. harzianum reduced the harmful effects of salinity
stress on plants and improved the plant growth [54]. Similar findings were also obtained in plants
exposed to salinity stress, e.g., T. asperellum Q1-treated cucumber [55] and seedlings of Arabidopsis
thaliana remedied with T. asperelloides T203 [56]. During heat and cold stresses, Trichoderma spp. also
play a crucial role in their mitigation. For example, chilling stress in tomato plants was mitigated when
plants were treated with T. harzianum AK20G strains [57]. Similarly, transgenic plants of A. thaliana
exhibited a greater tolerance to heat stress when transformed with T. harzianum T34 hsp70 genes [58].
Furthermore, various species of Trichoderma are also known for their roles in amelioration of oxidative
stress in plants. In fact, in wheat plants inoculated with T. longibrachiatum and subjected to salinity,
a significant increase in antioxidants like SOD (superoxide dismutase), CAT (catalase) and POD
(peroxidase) gene expression was observed [59].

2.6. Induction of Disease Resistance

It has been reported that the addition of different species of Trichoderma in a plant’s rhizosphere
improved plant defense against several pathogenic organisms such as viruses, bacteria and fungi, by
stimulating the initiation of different resistance mechanisms mainly encompassing induced systemic
resistance (ISR), hypersensitive response (HR) and systemic acquired resistance (SAR) [40]. Based on
several reports (Table 1), an inference in favor of different classes of metabolites can be outlined,
which emphasizes their significance as elicitors or resistance inducers in the Trichoderma-plants
interactions [60]. These metabolites incorporate proteins displaying enzymatic activity such as
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xylanases and chitinases, protein-like gene products expressed by non-virulent genes and low molecular
composites produced because of hydrolytic enzymatic degradation of fungal or plant cells [60].

Induction of resistance is due to the rise in the amounts of defensive metabolites as well as
enzymes. These mainly include phytoalexin biosynthesis (HR), which involves the participation
of enzymes of phenylpropanoid metabolism, i.e., phenylalanine ammonialyase (PAL) and chalcone
synthase (CHS) [61]. Other enzymes which enhance resistance in plants also include chitinases
and glucanases [62]. They also encompass pathogenesis-related proteins (PR) (SAR response),
and enzymes play a part in antioxidative defense response [61]. For example, Hordeum spp.,
exhibiting Trichoderma atroviride endochitinase Ech42 activity, revealed improved resistance for Fusarium
infection [62]. Likewise, T. harzianum-derived chitinase (Chit42), expressed in tobacco and potato plants,
led to the development of extremely tolerant or totally resistant transgenic lines towards soil-borne
pathogen like Rhizoctonia solani as well as foliar pathogens such as Alternaria alternata, A. solani and
Botrytis cinerea [63]. Yedidia et al. [64] confirmed that cucumber roots inoculated with T. harzianum
were characterized by a higher expression of peroxidase and chitinase activities, which improved plant
resistance to pathogenic attacks.

3. Trichoderma-Pathogen Interactions

Disease control, as facilitated by biocontrol mediators, is an outcome of the interactions among the
plant’s symbiont and pathogenic communities. Because of their capability to defend plants and control
pathogen populations, under various soil circumstances, Trichoderma spp. have been extensively
analyzed and exploited commercially as biocontrol agents, soil improvers and biofertilizers, placing
Trichoderma spp. amongst the most explored fungal BCAs [20,40,65]. Several species of this genus
are ‘rhizosphere competent’ and can also decompose polysaccharides, hydrocarbons, chlorophenolic
compounds and the xenobiotic pesticides employed in cultivation [66]. The key biocontrol strategies
that Trichoderma develops in direct conflict with fungal pathogens are mycoparasitism [67,68],
competition [60] and antibiosis [69,70].

3.1. Mycoparasitism

Mycoparasitism implies the direct strike of one fungal species on another and is among the most
important antagonistic mechanisms expressed by Trichoderma spp. About 75 Hypocrea/Trichoderma
species with mycoparasitic potential have been previously reported. There are several investigations
which indicate that numerous strains of Trichoderma attack and disintegrate plant pathogenic fungi, e.g.,
Rhizoctonia solani, Alternaria alternata, Sclerotinia sclerotiorum, Fusarium spp., Botrytis cinerea, Pythium spp.
and Ustilago maydis [40,70,71].

About 70 years ago, Weindling [72] was the first to note this mycoparasitic reaction. This complex
process includes sequential events. Firstly, identification between Trichoderma and the target fungus is
mediated by the binding of carbohydrates present in the cell wall of Trichoderma to the lectins of the
other one. This is followed by the hyphal twirling and appresoria development, which encompasses a
greater number of osmotic compounds like glycerol. After successful penetration, Trichoderma initiate
the attack on the host’s cellular machinery via generating numerous fungitoxic cell wall degrading
enzymes (CWDEs), such as glucanases, chitinases and proteases [40]. The cumulative action of these
compounds causes dissolution of the host cell walls, which ultimately results in parasitism of the
target fungus. It has been observed that gaps can be generated at the location of appressoria formation
which facilitate the direct access of Trichoderma hyphae into the lumen of the target fungus, which
then proceeds to kill the pathogenic fungus [22]. Furthermore, biocontrol agents not only degrade the
cell wall of target fungus, but also inactivate its enzymes (e.g., pectinases etc.), which are essential for
pathogenic fungus to colonize and penetrate the plant tissues [40].

As we know, fungal cell walls are mainly composed of chitin and β-1,3-glucan [73]. Chitinases (EC
3.2.1.14) and β-1,3-glucanases (EC 3.2.1.39) lytic enzymes synthesized by Trichoderma spp. are supposed
to be responsible for their mycoparasitic actions leading to the degradation of phytopathogenic fungal
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cell walls [74–76]. In addition, other CWDEs including those hydrolyzing minor polymers (like
proteins, β-1,6-glucans, α-1,3-glucans, etc.) further ensure the complete and effective disintegration
of fungal mycelial or conidial walls by Trichoderma spp. [77]. A chitin induced subtilisin-type serine
proteinase has previously been depicted in a Trichoderma harzianum mycoparasitic strain [76]. Moreover,
β-1,6-glucanases (EC 3.2.1.75) have been reported to degrade cell walls in yeast, filamentous fungi [78,79]
and bacteria [80] (Table 1).

Zeilinger et al. [81] previously reported that Trichoderma can sense the existence of pathogenic
mycelium in the rhizosphere and proliferate towards the direction of the pathogen area. Recently,
the green fluorescent protein encoding gene was incorporated downstream to the regulatory sequence
of an endo- and an exochitinase encoding gene. This study revealed that, during the Trichoderma-fungal
interaction, the endochitinase gene is stimulated prior to contact with the target fungus. On the contrary,
exochitinase activation took place only after the contact was established [82]. Distinct forms may
pursue separate patterns of stimulation, however, Trichoderma in fact constantly emit small amounts of
exochitinase. Transmission of this enzyme stimulates the generation of cell wall pieces from target fungi.
These fragments apparently interact with receptors on the cell wall or plasma membrane of Trichoderma
and consequently promote the expression of fungitoxic CWDEs [83]. These CWDEs in turn diffuse and
initiate the attack on the target fungi before the actual contact has been made [80,84]. As soon as the
contact has been established, Trichoderma spp. coil and form appressoria on the exterior of the host.
In addition to CWDEs, Trichoderma emits fungitoxic peptaibol antibiotics [85]. The collective action
of these ingredients is essential for dissolution of the cell walls and parasitism of the target fungus.
Approximately 20–30 known genes, proteins or metabolites are clearly engaged in this activity [86,87].

3.2. Competition

The limited availability of and competition for nutrients lead to the natural management of fungal
communities and phytopathogen development [51]. Competition for micro- and macronutrients such
as C, N and Fe plays a pivotal role during interactions of advantageous and disadvantageous fungi and
is coupled with the biocontrol systems [18]. It has been well established that Trichoderma species compete
for nutrients, biological niches or infection spots with pathogens in plant rhizosphere [60]. Trichoderma
exhibits a better capability to mobilize and absorb nutrients from the soil in comparison to other
rhizospheric microorganisms; therefore, the control management of some pathogens (e.g., B. cinerea)
by using Trichoderma involves the coordination of numerous strategies, such as the competition for
nutrients, which is considered amongst the most important [88].

The effective utilization of nutrients depends upon the ability of Trichoderma spp. to get energy
derived from the metabolism of carbohydrates like cellulose, chitin, glucan and glucose, which are
often present in the mycelial environment [51]. The function of the glucose transport system has yet to
be discovered, but it is conceivable that its competence in Trichoderma competition performs a pivotal
role [89]. Root exudates and the rhizosphere are particularly rich in nutrients like carbohydrates, amino
acids, organic acids, vitamins, Fe, etc., but the competition for C between Trichoderma and pathogenic
fungi like Rhizoctonia solani, F. oxysporium, etc. was considered to be most noteworthy [90,91].

As compared to other microbes in the soil, the competent mobilization of immobile nutrients and
their use provides superiority to Trichoderma. For this purpose, Trichoderma induces the reduction of
soil pH via the biosynthesis and release of organic acids like gluconic, citric and fumaric. Moreover,
these organic acids further facilitate the solubilization of micronutrients and mineral cations such
as phosphates, Fe, Mn and Mg [18]. Interestingly, it has been reported that T. harzianum CECT 2413
encodes a glucose transporter (Gtt1) which expresses a high affinity for glucose even at an exceptionally
low concentration [89,92]. Moreover, Vargas et al. [93] recognized an intracellular invertase enzyme
from T. virens (TvInv) which seems to be responsible for the degradation of plant-derived sucrose.

Fe ions serve as cofactor for multiple classes of enzymes and play a key role as a nutrient for
the growth and development of plants [94]. Iron occurs primarily as Fe3+ under the conditions of
neutral pH and in the presence of oxygen. In the aerobic environment, Fe tends to develop insoluble
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ferric oxide, which ultimately makes it not available for root absorption [94]. A Fe-chelating complex,
known as siderophore, is secreted by Trichoderma spp. [95]. This complex first binds to the insoluble
iron (Fe3+) and then transforms it into the easily absorbable soluble form, i.e., (Fe2+) (Figure 2). While
increasing the availability of Fe to plants, siderophore simultaneously depletes the Fe sources of the
soil and thereby inhibits the growth of target fungi [95]. Most of the fungal siderophores derived so far
relate to the hydroxamate class and can be classified into three families: fusarinines, coprogens and
ferrichromes [96,97].
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Figure 2. In plant rhizosphere Trichoderma produces a siderophore which chelates insoluble Fe (Fe3+)
and facilitate its conversion to soluble Fe (Fe2+) form. By doing this, Trichoderma also make Fe source
unavailable to pathogenic fungi and thereby deprive them of Fe.

3.3. Antibiosis

Antibiosis is the process by which diffusible low-molecular weight compounds interact and
reduce the growth of other microorganisms. Mainly, antibiosis is centered on the production of
secondary metabolites, which display an inhibitory or deadly consequence on a parasitic fungus.
More than 180 secondary metabolites indicating distinct classes of chemical products have been
isolated from fungal species belonging to genus Trichoderma [98,99]. Depending upon their biosynthetic
origins, these compounds can be grouped into peptaibol, polyketide and terpene [100]. Various spp.
of Trichoderma are known to produce non-proteinogenic amino acid (especially α-aminoisobutyric)
composed peptaibols, which are polypeptide antibiotics with a molecular weight ranging from 500
to 2200 Da. The peculiar feature of these compounds is that their N-terminal is acetylated, while the
C-terminal has amino alcohols [101]. Therefore, their chemical nature is amphipathic, and they arrange
themselves in the membrane to form voltage-gated ion channels. These peptides are synthesized by
non-ribosomal peptide synthetases (NRPSs).

In addition to this, Trichoderma spp. express the capability to synthesize a different class of
defensive metabolite, termed polyketides, through sequential events catalyzed by a complex of
enzymes called as polyketide synthases (PKSs). Different strains of Trichoderma synthesize a huge
variety of antibiotics [99], e.g., T. viride produces trichotoxins A and B, trichodecenins, trichorovins and
trichocellins. Similarly, trichorzianins A and B, trichorzins, HA and MA were isolated from culture
filtrate of T. harzianum. T. longibrachiatum produces tricholongins BI and BII, whereas longibrachins
and trichokonins were isolated from T. koningii; atroviridins A-C and neoatroviridins A-D derive
from T. atroviride cultures. Further, other antibacterial and fungicidal metabolites, e.g., koningins,
viridin, dermadin, trichoviridin, lignoren and koningic acid were isolated from T. koningii, T. harzianum,
T. aureoviride, T. viride, T. virens, T. hamatum and T. lignorum cultures [99]. Gliotoxin and gliovirin are
among the most significant secondary metabolites of Trichoderma related to the P and Q group strain,
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respectively (Table 1). P group strains of Trichoderma (Gliocladium) virens adversely affect P. ultimum,
but not R. solani. On the other hand, Q group is more active against R. solani [102]. The T. virens
gene veA ortholog vel1 encoded the VELVET protein, which regulates both the biosynthesis and the
biocontrol activity of gliotoxin as well as other genes participating in the secondary metabolism [103].

Growth of soil-borne pathogens like R. solani, Phytophthora cinnamomi, Pythium middletonii, Fusarium
oxysporum and Bipolaris sorokiniana was observed to be negatively affected in the presence of Koninginin
D [104]. In a similar way, viridins obtained from Trichoderma spp. like T. koningii, T. viride, and T. virens
contained the spore germination of Botrytis allii, Colletotrichum lini, Fusarium caeruleum, Penicillium
expansum, Aspergillus niger and Stachybotrys atra [105]. T. harzianum-derived harzianic acid showed
antibiotic activity against Pythium irregulare, Sclerotinia sclerotiorum and R. solani in in-vitro culture [106].
Two asperelines (i.e., A and E) and 5 trichotoxins designated as T5D2, T5E, T5F, T5G and 1717A
with antibiotic features were produced by the T. asperellum strain [107]. In general, antibiotic activity
is combined cooperatively with lytic enzymes. Their dual action offers a more advanced level of
antagonism than the activity of either antibiotics or enzymes acting alone [108]. As observed by Howell
et al. [63], initial disintegration of cell walls in the case of B. cinerea and F. oxysporum by lytic enzymes
enhanced the antibiotic penetration into the target hypha.

4. Effect of Trichoderma Inoculation

4.1. Destruction of Pathogenic Organism

This complex process includes sequential events, which initially involve recognition between
Trichoderma and the target fungus, the coiling around the fungal hyphae, which is followed by
appresoria development [40]. After this collective action, lytic enzymes cause the dissolution of
target fungal cell walls. Furthermore, Vel1 of Trichoderma virens participates in the expression of
hydrophobin, which facilitates the adhesion of Trichoderma to the host [24]. Interestingly, seven
transmembrane G protein coupled receptors (Gpr1) are engaged in perceiving the target fungus in
the adjacent neighborhood [109,110]. Binding of ligands with such receptors causes the downstream
signaling cascade via stimulation of G proteins and mitogen-activated protein kinase (MAPK). Three
MAPK (i.e., MAPKKK, MAPKK and MAPK) are known in different species of Trichoderma [111].
These signaling pathways might play an important role during mycoparasitism and biocontrol of
pathogens [111,112] (Table 1). Manufacture and discharge of CWDEs and antibiotics are extremely
valuable members of the chemical resources used by Trichoderma to eradicate the pathogens (Figure 3).

Trichoderma also owns glucan and chitin synthases, which are enzymes involved in the healing of the
Trichoderma cell wall, which might be damaged during Trichoderma–pathogen contact. Simultaneously,
hydrolytic enzymes like chitinases and glucanases, as well as those for secondary metabolism like the
NRPSs (non-ribosomal peptide synthetases) pathway, are expressed, inducing pathogen death [98].
Participation of chit42, chit3, bgn13.1, Bgn2, Bgn3 and prb1 genes in biocontrol of deleterious fungi
through the activities of chitinases, glucanases and proteases were demonstrated [113].

Certain Trichoderma species (e.g., T. atroviride) produce 6-pentyl-2H-pyran-2-one (6-PP), a volatile
metabolite which plays a key role during Trichoderma–fungal interactions [106,114]. Recently, genetic
investigations unveiled that NRPS Tex2 of T. virens causes the assemblage of 11- and 14-module
peptaibols [115], and these peptaibiotics strongly exhibit antimicrobial activities. For instance,
a T. pseudokoningii peptaibol, called trichokonin VI, is known to form voltage-gated channels in
membrane, and it ultimately induces programmed cell death (PCD) in Fusarium oxysporum [116].
Similarly, trichokonins VI, a peptaibol isolated from T. pseudokoningii SMF2, displays antibiotic actions
by stimulating wide-ranging apoptotic PCD in a range of fungal pathogen species [117]. In a mutant
of T. brevicompactum, namely Tb41tri5, the promoted expression of the tri5 (trichodiene synthase) gene
amplified the synthesis of trichodermin. Additionally, it enhanced the antifungal activity against
Aspergillus fumigatus and Fusarium spp. [115,117].
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4.2. Plant Growth Promotion

Root colonization by Trichoderma in both mono- and dicotyledonous plants might cause noteworthy
variations in plant metabolism. These mainly include alteration in the biosynthesis of growth regulators,
compatible osmolytes, amino acids and phenolic components, as well as other physiological processes
like photosynthesis, transpiration and leaf water potential [118,119]. Many lytic enzymes such as
cellulase, xylanase, pectinase, endopolygalacturonase, glucanase, lipase, amylase, arabinase and
protease have been isolated from different strains of Trichoderma [120,121]. A cellulose-binding protein
termed swollenin can disrupt the crystalline structure of cellulose in plant cell walls [26]. It possesses a
sequence similarity with plant protein expansins, which simplifies expansion of the plant cell wall in
roots, as well as in root hairs. Via swollenin production, Trichoderma may enhance the surface area of
plant roots, improving its establishment in the rhizosphere [26,70].

In general, an immune-like system is exhibited by plants which has the potential to perceive
domains/motifs with preserved structural characters distinctive of a family of microbes termed as
microbe-associated molecular patterns (MAMPs) (Figure 4) [13]. The ability of Trichoderma spp. hyphae
to release MAMPs for molecular recognition may contribute to signal cascade by signaling molecules
within the plant. Trichoderma acts locally and systemically, involving signaling cascade and activation
as well as accumulation of defense-related antimicrobial compounds and enzymes such as phenyl
ammonia lyase (PAL), peroxidase, polyphenol oxidase and lipoxygenase. In addition, PR proteins,
terpenoid, phytoalexins (rishitin, lubimin, phytotuberol, coumarin, solevetivone, resveratrol, etc.)
and antioxidants (ascorbic acid, glutathione, etc.) are also synthetized [102]. Consequent upon
fungal invasion, plants respond to Trichoderma colonization by producing and concentrating defensive
compounds like phytoalexins, flavonoids, terpenoids, phenolic byproducts, aglycones and additional
antimicrobial compounds. Interestingly, Trichoderma strains are normally resistant to such compounds.
This resistance is regarded as a crucial prerequisite to colonize the plant roots, and it has mainly been
contributed by ABC (ATP-binding cassette) transport systems present in Trichoderma strains [122].
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Figure 4. Plant-Trichoderma interaction involves the recognition molecules, i.e., MAMPS
(microbe-associated molecular patterns) and effectors. MAMPS and effector molecules bind to the
PRRs (pattern recognition receptors) and intracellular receptors and thereby initiate the MTI (MAMPS
triggered) and ETI (effector triggered) immunity in plants, respectively. Moreover, this interaction
also leads to the production of ROS (reactive oxygen species), which serve as signaling molecules and
initiate a defensive response in plants by synthesis of antifungal molecules like phytoalexins, VOCs
(volatile organic compounds), PRs (pathogenesis related) proteins such as CWDEs, etc. Trichoderma
also improved the plant growth in pathogen-contaminated soil by regulating the expression of genes
involved in growth regulation as well as induction of disease resistance.

Reactive oxygen species (ROS) like H2O2, nitric oxide, etc., produced by glucose oxidase enzymes,
are linked to Trichoderma-intermediated immunity in cotton, rice and A. thaliana [123–125]. Defense
signaling in plants involves the participation of mitogen-activated protein (MAP) kinases, which
convey information from receptors to initiate a cascade of cellular responses in plants (Figure 4) [126].
As reported in the case of cucumber, a MAPK exhibiting similarity with MPK3 of A. thaliana is
stimulated via inoculation of the root with T. asperellum [127]. In a similar manner, an increase of
concentration of the phytoalexin camalexin was detected in the T. virens- and T. atroviride-colonized
root system of A. thaliana [128].

Molecular studies in A. thaliana revealed that colonization of roots by T. asperelloides T203 activated
a quick upsurge in transcription factor (WRKY18, WRKY40, WRKY60 and WRKY33) expression, which
further suppresses salicylic acid (SA) signaling and triggers jasmonic acid (JA)-pathway responses.
These genes are induced by pathogens and their expression encodes three WRKY structurally linked
proteins that play a key role in JA-arbitrated defense [56]. The expression of PR-1a (pathogenesis-related)
and SA regulated genes, as well as the LOX2 gene, were upregulated by the application of T. atroviride
and T. virens to A. thaliana [128,129]. Moreover, T. harzianum amplified the levels of SA and JA in melon
and thereby changed the plant reactions against F. oxysporum [130]. Likewise, expression of LOX and
PAL1 genes (involved respectively in the biosynthesis of jasmonic acid and salicylic acid) and ETR1
and CTR1 genes (participating in ethylene signaling pathways) were observed to increase after the
application of T. asperellum T203 [131] (Table 1).

Cellulysin, isolated from T. viride, stimulates the octadecanoid signaling pathway, which
subsequently activates the discharge of several volatile compounds in plants [132]. As reported
in the case of leaves of lima bean, cellulysin together with JA induce the synthesis of dimethyl
nonatriene, hexenyl acetate, germacrene, ocimene, caryophyllene and copaene. Another resemblance
between JA- and cellulysin-induced actions causes the discharge of ethylene [132]. Beside degradation
of xylan, β-1,4- endoxylanase (EIX) activity from T. viride provoked ethylene emission and the plant
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defensive system in tobacco [133]. A rise in ethylene levels is supplemented by buildup of ACC
(1-aminocyclopropane-1-carboxylic acid) due to enhancement in ACC synthase activity as well as
increase in ACC oxidase transcripts [134]. In addition, it has been observed in rice plants that EIX
behaved as fungal elicitors, controlling phytoalexin biosynthesis and the expression of defensive genes
via calcineurin B-like protein-interacting protein kinases (OsCIPK14/15) [135]. Similarly, SM1, a fungal
elicitor obtained from T. virens, encourages the expression of the CAD1- C gene in cotton petioles,
which encodes the enzyme (+)-δ-cadinene synthase. This enzyme serves as a primary inducer for
phytoalexin synthesis in response to pathogen invasion [122,136].

Table 1. Compounds synthesized by Trichoderma spp. involved in plant interaction.

Sr. No. Category Sub-Category Function Performed Trichoderma Species References

1. Phytohormones

IAA Growth and development of plants and
their root system. T. virens [35]

GA3

Growth promotion by degradation of
growth repressing DELLA proteins and

reduction in ethylene level.
Trichoderma spp. [13,137]

ABA
Alteration in transpiration and regulation
of stomatal aperture via induction of an

ABA receptor.
T. virens and T. atroviride [33]

Ethylene
Improved tolerance to biotic as well as

abiotic stresses by regulation of levels of SA
and JA as well as their signaling pathways.

T. atroviride [138–140]

JA JA and/or ET are the signaling molecule for
Tichoderma-induced ISR. T. asperellum [141]

SA Enhances disease resistance in plants
through induction of SAR. T. atroviride [26,142,143]

2. Enzymes

Hydrolytic

Cellulolytic enzymes Cleavage of β-1,4-D-glycosidic bonds in
cellulose molecule. [120]

Exo-β-1,4-glucanases
Breakdown of cellulose by forming a
cellobiose molecule either from the
reducing or nonreducing terminals.

T. viride, T. harzianum,
T. reesei, T. koningii [144]

Endo-β-1,4-glucanases

At the time of enzymatic lysis of cellulose,
break the β-1,4- glycosidic bonds in a

random way probably in the amorphous
areas of cellulose and thereby cause

formation of cellulodextrines with variable
chain lengths.

T. viride,
T. longibrachiatum,

T. pseudokoningii and
T. reesei

[145–147]

β-Glucosidases
Promote lysis of short length

oligosaccharides and cellobiose into
glucose.

T. viride, T. harzianum,
T. reesei and

T. longibrachiatum.
[148,149]

Xylanase Catalyze breakdown of xylans to form
xylo-oligomers, xylobiose and xylose.

T. harzianum, T. koningii,
T. lignorum,

T. longibrachiatum,
T. pseudokoningii, T. reesei,

T. viride
Trichoderma harzianum,
T. virens, T. asperellum,

T. atroviride

[150]

Chitinase Catalyze degradation of chitin to
chitooligomers of low molecular weight.

[83,151–154]

Endochitinases

Randomly hydrolyses chitin at internal
sites and form dimer of diacetylchitobiose
and low molecular weight multimers of

GlcNAc like chitotriose and chitotetraose.

Exochitinases

Divided into 2 subcategories: 1.
Chitobiosidases, involved in catalyzing the

sequential release of diacetylchitobiose
starting from the non-reducing end of the

chitin microfibril
2. 1-4-β-glucosaminidases, splitting the

oligomeric products of endochitinases and
chitobiosidases, thereby producing

GlcNAc monomers.
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Table 1. Cont.

Sr. No. Category Sub-Category Function Performed Trichoderma Species References

Proteases

Exopeptidases Cause the cleaving of peptide bond either
at the amino or carboxy terminal. T. viride, T. harzianum,

T. aureoviride, T. atroviride
[155,156]

Endopeptidases Split the peptide bonds away from the ends.

Lipase

Lipase hydrolyses ester bonds of
triacylglycerols, resulting in the formation

of mono- and diacylglycerols, free fatty
acids and, in some cases, glycerol also.

T. lanuginosus,
Trichoderma reesei,

Trichoderma koningii,
T. harzianum, T. virens,

m T. viride

[157]

Glucose oxidase Cause generation of reactive oxygen
species (ROS). T. virens, T. asperelloides [123–125]

Antioxidative enzymes
(e.g., SOD, CAT, POD etc.)

Enhance antioxidative defense mechanism
in plants. Trichoderma spp. [59,158]

Biosynthetic and signaling

PAL & CHS Production of phytoalexins. Trichoderma spp. [60]

Glucan and Chitin synthases
Produced by the Trichoderma to repair their
self-cell wall damage by pathogen during

Trichoderma–pathogen interaction.
Trichoderma spp. [159]

MAPK
Convey information from receptor to

generate cellular signaling and defense
responses.

Trichoderma spp. [126,131]

ETR1 and CTR1 Involved in ethylene (ET) signaling. Trichoderma spp. [131]

LOX1 (Lipoxygenase 1) PAL1
(phenylalanine ammonia lyase),

Participate in jasmonic acid (JA)
biosynthetic pathway.

Involved in biosynthetic pathway for
salicylic acid (SA)

Trichoderma spp. [160]

ACC synthase ACC oxidase Promote ethylene biosynthesis. Trichoderma spp. [134]

δ-cadinene synthase Act as precursor for phytoalexin synthesis. T. virens [123,136]

3. Soil modifiers

Gluconic, citric and fumaric acids
Reduce the pH of soil and facilitate the

solubilization of phosphates and
micronutrients.

Trichoderma spp. [18,41]

Siderophore Chelate with insoluble Fe (III) and convert
them to soluble Fe (II). Trichoderma spp. [44,94,95]

4. Secondary metabolites

Pyrones Antimicrobial Trichoderma spp. [161]

Lactones
Participate in IAA and ethylene-mediated
signaling and improve plant growth and

root architecture.

T. harzianum,
Trichoderma cremeum [162]

Koninginins Antimicrobial T. koningii, T. harzianum,
T. aureoviride [163,164]

Trichodermamides Antifungal and exhibit cytotoxicity to
human colon carcinoma. T. virens [165,166]

Viridins Antifungal Trichoderma virens,
T. koningii, T. viride [99,167,168]

Nitrogen heterocyclic compounds
(harzianopyridone, harzianic acid) Antifungal T. harzianum [169–171]

Azaphilones Antifungal T. harzianum T22 [171,172]

Butenolides and hydroxy-Lactones
(cerinolactone, trichosordarin A,

harzianol A and harzianone)
Antifungal

T. cerinum, Trichoderma
cremeum, Trichoderma

longibrachiatum
A-WH-20-2

[163,173,174]

Isocyano metabolites
(dermadin and trichoviridin) Antifungal T. viride T. koningii and T.

hamatum [164,175,176]

Diketopiperazines
(gliotoxin and gliovirin) Antifungal Trichoderma (Gliocladium)

virens [177]

Peptaibol (alamethicin, trichokonin VI)
Non-ribosomal short peptides, rich in

2-amino-isobutyric acid involved in plant
defense and antimicrobial in nature.

T. virens,
T. longibrachiatum [178,179]
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Table 1. Cont.

Sr. No. Category Sub-Category Function Performed Trichoderma Species References

Polyketides
Participate in SA mediated signaling
pathway and exhibit antimicrobial

activities.

T. virens, Trichoderma sp.
SCSIO41004 [180,181]

Terpenes
cyclonerane sesquiterpenoids,
trichocitrin, trichosordarin A

Antimicrobial

T. virens, Trichoderma
harzianum P1-4,

Trichoderma citrinoviride
cf-27, Trichoderma

harzianum R5

[182–185]

Volatile organic compounds (VOCs)
(trichodiene)

Facilitate the plant-microbe interactions in
rhizosphere

T. arundinaceum,
T. atroviride [186–188]

Hydrophobins Plant growth promotion, signaling and
defense

T. virens and T. atroviride,
T. asperellum [189,190]

5. Other Applications of Trichoderma

Besides the aforementioned roles of Trichoderma spp., their extreme versatility in terms of metabolite
production makes fungi from the genus Trichoderma potentially interesting for different applications,
as detailed below.

5.1. Bioremediation

Several deleterious organic pollutants like phenols, cyanides and nitrates are frequently degraded
via T. harzianum [191]. There are several reports which show the involvement of Trichoderma spp. strains
in detoxification of polycyclic aromatic hydrocarbons (PAHs). Katayama and Matsumura [192] verified
the degradative efficacy of Trichoderma spp. against several artificial dyes like pentachlorophenol,
endosulfan and dichlorodiphenyl trichloroethane (DDT). Capability of immobilized T. viride biomass
along with cell-free Ca-alginate beads in biosorption of Cr (VI) has already been reported [193]. Similarly,
T. inhamatum displayed an extraordinary capability to stand and totally reduce Cr (VI) concentrations,
playing a significant role in bioremediation of Cr (VI)-contaminated wastewaters [194]. Likewise,
Trichoderma harzianum express various adaptive strategies in detoxification of Cd contaminated soil [195].

5.2. Animal Feed

Lytic enzymes, like cellulases, hemicellulases and pectinases, produced by Trichoderma spp. can
be employed in partial hydrolysis of plant cell walls in feeds. This process increases the digestibility of
the feed and increases its nutritive value. Therefore, an increase in animal body weight as well as a
higher milk yield was observed [196].

5.3. Industrial Applications

Cellulases produced by Trichoderma are also used to soften textiles. Moreover, the enzymes attained
from Trichoderma are employed to modify fiber properties as well as to reduce lignin contents [197].
T. harzianum-derived mutanase may be added in toothpaste to avoid the development of plaque [198].
In the food industry, additional metabolites obtained from the different species of Trichoderma are also
used along with their enzymes. For example, nut aroma producing compounds, obtained initially
from T. viride and afterward from T. atroviride, express useful antibiotic properties [199]. Brewery
industries also use the enzymes attained from Trichoderma spp. They may also be employed as food
additives and escalate maceration of raw materials for the manufacturing of fruit and vegetable juices.
These enzymes can also be employed to improve wine tang and increase the fermentation, filtration
and excellence of beer. Above all, the potential of Trichoderma-derived bioactive compounds could be
exploited in the pharmaceutical industry because of their several curative properties [200–203].
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5.4. Second Generation Biofuels

Improved conservational understanding of whole communities as well as growing concerns
in alternative resources of energy make it feasible to use fungi from the genus Trichoderma in
the manufacturing of self-styled second-generation biofuels [204]. For instance, cellulases and
hemicellulases supplied by T. reesei are used in the production of bioethanol from farm wastes. These
enzymes indeed catalyze the biodegradation of substrates to simple sugars, and afterwards, these are
exposed to yeast (Saccharomyces cerevisiae)-induced fermentation [205,206].

5.5. Wood Preservation

Wood preservation by chemicals is relatively cheap and effectively prolongs the service life of
wood [207]. By contrast, the toxicity of heavy metals and other chemicals used as wood preservatives are
also a matter of serious health and environmental concern [208–211]. The intense research activities on
developing and testing less problematic protective systems demonstrate the urgent need for innovation
in this field [212–220]. As the antagonistic properties were evolved in competition with other wood
destroyers—such as wood-rotting and sap-staining fungi, or other molds—the expectation is justified
that the Trichoderma isolated from wood does have the ability to effectively inhibit wood-damaging
fungi. Interestingly, Ejechi [221] researched the capability of Trichoderma viride to prevent the fungal
(Gloeophyllum sp. and G. sepiarium) decay of obeche (Triplochiton sceleroxylon) wood via deterioration of
decaying fungi under field conditions. Similarly, Tucker et al. [222] observed that isolates of Trichoderma
spp. were involved in effective protection of wood against certain basidiomycetes.

5.6. Agricultural and Horticultural Applications

Numerous Trichoderma spp. have also been used to protect fruits and vegetables of commercial
significance throughout post-harvest storage. For example, Mortuza and Ilag [223] employed 10
isolates of T. harzianum and T. viride against Lasiodiplodia theobromae (fruit rot pathogen of banana).
Similarly, Batta [224,225] applied the invert-emulsion formulation of T. harzianum Rifai in opposition to
apple blue mold infection to prevent post-harvest decay of fruit. Trichoderma spp. are well-recognized
fungal antagonists of crop/seed pathogens. Management of Colletotrichum truncatum, causing brown
blotch of cowpea, has been done via the pre-treatment of seeds in T. viride spore suspension [226].

6. Conclusions and Future Perspectives

Biocontrol might be well-described as the practice of biological organisms or genetically altered
genes or their products to lessen the consequences of unwanted organisms and to support organisms,
which seems to be beneficial for human beings. As discussed in this review, Trichoderma spp. are
correctly renowned for their capacity to generate a broad range of antibiotic substances that have the
potential to parasitize a wide array of pathogenic fungi in the rhizosphere. In addition, Trichoderma spp.
synthesize several metabolites which have a substantial influence on plant growth, along with
stimulation of localized and systemic resistance and stress tolerance in plants. The recognition of
Trichoderma elicitors and effectors by plant receptors initiates the signaling and regulation of host
genetic apparatus, which serves as a basis for these symbionts to induce the defense metabolism in
their host.

Further research dealing with the biochemical and physiological bases through which
Trichoderma spp. act as biocontrol agent against several lethal fungi is necessary for a wide,
in-depth knowledge of this multitalented biocontrol agent. Moreover, for the purpose of integrated
disease management, the compatibility of Trichoderma with chemical fungicides should be evaluated.
The popularity of Trichoderma-based formulations among farmers for ecofriendly management of
diseases should be enhanced. The ecological influence of comprehensive applications of a fungal
species as well as their secondary metabolites for biocontrol should be assessed to confirm a database
for the secure and sustainable usage of Trichoderma. Consequently, Trichoderma genomes can also serve
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as an extremely useful source of candidate genes for producing transgenic plants exhibiting tolerance
to both biotic and abiotic stresses. Lastly, by taking into consideration all the information provided in
this review, the use of Trichoderma species should be promoted as a valid alternative to pesticides in the
era of a green economy which aims at promoting human health and environmental safeguarding.
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