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Techniques to monitor oxidative stress pre-visually are essential to optimize plant management. Here, we
investigated the capability of hyperspectral reflectance (350—2500nm) to characterize responses of two
pomegranate cultivars (Parfianka and Wonderful) under ozone (O3) episodes at a gradient of concentrations (50,
100 and 200 ppb for 5h). Analyzing spectral signatures collected rapidly and non-destructively from asymp-
tomatic leaves, we accurately discriminated the two cultivars, as well as controls from plants exposed to O, in
particular those under the higher oxidative stress (i.e. 200 ppb). These discriminations were especially accurate
in Wonderful at the end of the exposure (5 h from the beginning of exposure; FBE), and at 24 h FBE. Furthermore,
using a partial least squares regression (PLSR) approach, we constructed predictive spectral models to estimate
from spectra an array of commonly used physiological and biochemical leaf traits related to plant/oxidative
stress interaction (photosynthesis, lipid peroxidation, enzymatic and non-enzymatic antioxidants). Most traits
were relatively well predicted by spectroscopic models (model goodness-of fit for validation, R%: 0.77—0.50).
Finally, variations of spectra-derived vegetation indices and leaf traits derived from spectra confirmed the lower
Os-tolerance of the Wonderful cultivar, when exposed to 200 ppb. Overall, the present study shows that the
proposed spectroscopic approach can rapidly and non-destructively assess early oxidative stress conditions in
plants, and consequently it can help in increasing plant yield and quality. Limitations of the approach are also
presented and discussed.

Spectral signatures
Vegetation index

1. Introduction radiation and temperature; Lefohn et al., 2018). This raise is especially

expected in hot-spot areas such as the Mediterranean basin (Ochoa-

Tropospheric ozone (Os) is a global air pollutant that causes billions
of dollars in lost plant productivity annually, not to mention impairment
for ecosystem services (Lefohn et al., 2018). It negatively affects all key
features of plant life, from photosynthesis to biomass accumulation.
Ozone affects plants both directly, since excessive foliar uptake of Os
induces oxidative stress to cells if they are not able to repair and/or
compensate oxidative damage by the regulation of antioxidant com-
pounds, and indirectly, through its role as a greenhouse gas contributing
to global warming (Ainsworth, 2017). Although several efforts have
been made to reduce the emission of its precursors (mainly nitrogen
oxides and volatile organic compounds), the O3 concentrations in air are
still elevated in many regions of the world (e.g. East Asia), and are
predicted to increase further due to both anthropogenic activities (e.g.
emission of O3 precursors) and climatic change (e.g. increased solar
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Hueso et al., 2017). Therefore, advancements in phenotyping ap-
proaches able to early detect and monitor the effects of oxidative stress
on plants, even in the absence of visible symptoms, are necessary to
increase yield, quality and management promptness and effectiveness
(e.g. proper supply of water, fertilizers and agrochemicals), since
traditional methods of analyzing such plant responses to variable envi-
ronments are slow, labor-intensive, and often destructive (Cotrozzi
et al., 2018b).

Vegetation spectroscopy is a high-throughput sensor technology
based on the optical properties of living vegetation (e.g. leaf and canopy
reflectance) that enables the rapid and non-destructive assessment of
plant status, along with the potential to simultaneously estimate several
plant traits on a large number of individuals over multiple time periods
(Cotrozzi and Couture, 2020). The prediction of these traits from leaf
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spectra is based on the exploitation of the relationships of light with
molecular organic bonds, mainly C-H, N-H, and O-H, resulting in
vibrational excitation at specific wavelengths through the visible (VIS:
400—-700nm), the near-infrared (NIR: 700-1100nm) and the
short-wave infrared (SWIR: 11002400 nm) spectral regions (Cotrozzi
et al., 2018b). Improvements in the sensitivity and portability of spec-
trometers, as well as in advancements in computational capacity and
chemometric modelling, has enabled the exploitation of reflectance
spectra by using different approaches. First, using simple vegetation
indices based on the ratio of reflected light at different wavelengths that
have been developed to predict several foliar traits (e.g. normalized
difference vegetation index, NDVIL; Gamon et al., 1995). Second, using
multivariate methods (e.g. partial least squares regression, PLSR; Wold
et al., 2001) to directly model commonly used foliar morphological,
physiological and biochemical plant parameters as a function of the
spectral profiles (e.g. Serbin et al., 2015; Couture et al., 2016; Cotrozzi
et al., 2017, 2020a, 2020b; Ely et al., 2019; Marchica et al., 2019).
Third, using spectra themselves as a phenotypic expression of the
aggregate signals of chemical, morphological and physiological prop-
erties of leaves under specific environmental conditions (i.e. analyses of
spectral signatures; Cotrozzi and Couture, 2020). The ability of vege-
tation spectroscopy to assess the effects of air pollutants on plants has
been reported since long (see Cotrozzi et al., 2018b for a review).

However, questions remain regarding the ability of spectroscopy to
detect and monitor the effects of O3 on vegetation, since (i) most studies
were carried out using limited spectral regions; (ii) the available ap-
proaches to exploit information from spectra (e.g. spectral indices,
multivariate-methods to predict leaf traits, analyses of spectral signa-
tures) were not combined; (iii) chronic Os effects have been mostly
studied, whereas those of O3 episodes remain understudied; (iv) a
gradient of O3 concentrations was never investigated; and (v) few spe-
cies have been studied so far (Marchica et al., 2019). Here, we addressed
most of these gaps, focusing on pomegranate, a species never investi-
gated by using a leaf spectroscopy approach (a few spectroscopy studies
were performed on pomegranate fruits; e.g. Khodabakhshian et al.,
2019).

Pomegranate (Punica granatum L.) is a fruit-bearing deciduous shrub
in the family Punicaceae, cultivated since ancient times throughout the
Mediterranean area and Middle East, and more recently in many other
regions world-wide such as in Southern Asia, and North and South
America (Texeira da Silva et al., 2013). Although pomegranate is still
evaluated as a minor crop, the demand in pomegranate fruits is rapidly
increasing because of their large number and content of bioactive and
nutraceutic compounds such as vitamins, minerals and polyphenols
(Johanningsmeier and Harris, 2011; Singh et al., 2018), as well as the
high adaptability of this species to a wide range of environmental con-
straints such as elevated temperatures, drought and salinity (Texeira da
Silva et al., 2013; Catola et al., 2016; Calzone et al., 2020). Only Calzone
et al. (2019) investigated the responses of pomegranate (cultivar Dente
di cavallo) to realistic and chronic O3 concentrations (alone and in
combination with salinity), whereas the interaction of pomegranate
with an episode of Os stress was never investigated before the present
study.

The aim of the present work was to evaluate the ability of reflectance
spectroscopy to rapidly and non-destructively assess the oxidative stress
induced by an O5 episode on asymptomatic pomegranate plants of the
two widely cultivated cultivars Parfianka and Wonderful. Specifically,
our novel purposes were to (a) evaluate the potential of vegetation
spectroscopy to pre-visually and accurately detect oxidative stress con-
ditions induced by a gradient of O5 concentrations, (b) develop PLSR-
models for the estimation from spectra of several commonly investi-
gated leaf traits related to plant-oxidative stress interaction (i.e.
photosynthetic activity, lipid peroxidation, antioxidant capacity, and
major enzymatic and non-enzymatic antioxidants; Ainsworth, 2017),
and (c) investigate the variations of vegetation indices and leaf traits
derived from spectra by PLSR-models, under oxidative stress, in order to
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elucidate the sensitivity of pomegranate cultivars to Os. Specifically, we
predicted that (a) vegetation spectroscopy can early assess oxidative
stress, especially when it is of a high magnitude, (b) an array of leaf traits
associated with oxidative stress can be accurately predicted from
spectra, especially the physiological ones, and (c) variations of predicted
leaf traits highlight a higher O tolerance of Parfianka than Wonderful.
Most of the outcomes from the present study could be broadly applied
across different investigations focused on various abiotic and biotic
constraints inducing oxidative stress in plants.

2. Materials and methods
2.1. Plant material and experimental design

On April 2018, two-year-old container-grown pomegranate plants of
the commercial cultivars Parfianka and Wonderful were collected from a
local nursery and transported to the field-station of San Piero a Grado
(Pisa, Italy; 43°40'48" N, 10°20'46" E, 2 m a.s.l.) of the Department of
Agriculture, Food and Environment, University of Pisa. On August 2018,
45 plants per cultivar were selected for uniformity of height (ca. 1 m),
transplanted into 5-L plastic pots containing sandy soil, and maintained
well-watered under standard agronomic conditions. After one month (i.
e. September 2018), plants were grouped for homogeneity and exposed
by four greenhouse fumigation chambers to target O5 concentrations of
50, 100 and 200 ppb (1 ppb=1.96 pg m~2, at 25°C and 101.325 kPa)
for 5h from 10:00 to 15:00, or to charcoal-filtered air (<5 ppb). After the
fumigation, all plants were maintained in the same conditions of con-
trols, under charcoal filtered air. The exposures were performed in three
consecutive days: each day, five plants per cultivar were exposed to
charcoal-filtered air (i.e. controls) and ten plants per cultivar were
exposed to one of the target O3 concentrations (i.e. 50, 100 and 200 ppb;
one O3 concentration per day; using two chambers for controls and two
chambers for plants exposed to Os; Table S1). Plants were repositioned
within each chamber at each time of analysis. The O3 exposure was
performed with a Fisher 500 air-cooled O3 generator (Fisher America
Inc., Houston, TX, USA), according to Cotrozzi et al. (2018a). The
greenhouse day and night mean temperatures were 26 and 20°C,
respectively; and maximum day and night of relative humidity (RH)
were approximately 60 and 50 %, respectively.

Measurements and sampling were carried outat0, 1,2, 5,7 and 24 h
from the beginning of exposure (FBE). This timing was in accordance
with previous studies focused on stress episodes in herbaceous and tree
species (e.g. Pellegrini et al., 2018; Landi et al., 2019; Pistelli et al.,
2019). At each time of analysis of each of the three days of the experi-
ment, leaf reflectance profiles of five controls and ten Os-treated plants
of each cultivar (two leaves per plant) were collected in a few minutes.
These reflectance measurements (n = 540) were used for the analyses of
spectral signatures and for the final estimations of vegetation indexes
and other leaf traits predicted by PLSR-models here developed (see
below). After these spectral measurements, one control plant and two
ozonated plants of each cultivar were selected at each time FBE (except
at 0 FBE) and consecutively measured/harvested in the following order:
leaf gas exchanges, reflectance and sampling. This procedure was so
performed once on each plant (n=90) throughout the whole experi-
ment. Gas exchange measurements were performed on the third highest,
mature and fully-expanded leaf, whereas similar and contemporary
leaves (three per plant) were collected in liquid nitrogen, stored at
—80 °C, and later freeze-dried for biochemical analyses. These combined
spectral and standard measurements (i.e. gas exchange and biochem-
istry) were used to build PLSR-models (see below). The onset of visible
foliar symptoms was checked throughout the whole experiment.

2.2. Collection of leaf spectra

Full range (350—2500nm) leaf reflectance profiles were collected
using an ASD FieldSpec 4 spectroradiometer (Analytical Spectral
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Devices, Boulder, CO, USA), equipped with a leaf-clip including an in-
ternal halogen light source attached to a plant probe. Measurements
were collected on two areas (randomly selected, @ 1 cm) of the adaxial
surface of each leaf, with one measurement per area, and collections
were combined to produce an average leaf spectrum. The relative
reflectance of each leaf was determined from the measurement of leaf
radiance divided by the radiance of a white reference panel included in
the leaf-clip, measured every 12 spectral collections.

2.3. Standard measurements

Carbon dioxide (CO,) assimilation rate (A), transpiration (E), sto-
matal conductance (gs) and intercellular CO; concentration (C;) were
determined using an infra-red gas-analyzer (CIRAS-2, PP Systems Inter-
national Inc., Amesbury, MA, USA) equipped with a leaf chamber set to
400 ppm of CO, concentration, 1500 pmol m~2s! of PAR (i.e. saturating
light conditions), and 65 % of RH. Average leaf temperature and vapor
pressure deficit inside the cuvette were 28 °C and 2.0 kPa, respectively.
Intrinsic water use efficiency (WUE;,) was determined as A/gs.

A UV-1900 spectrophotometer (Shimadzu, Kyoto, Japan) was used
for all spectrophotometric analyses, unless otherwise specified. After
extracting 10 mg of leaf samples with 1 mL of 80 % ethanol, lipid per-
oxidation was determined by measuring the malondialdehyde (MDA)
by-product accumulation (Hodges et al., 1999), which takes into ac-
count the possible influence of interfering compounds in the assay (e.g.,
phenols) for the 2-thiobarbituric acid-reactive substances (Guidi et al.,
2016). The antioxidant ability was evaluated by measuring the oxygen
radical absorption capacity (ORAC; Ou et al.,, 2001) and hydroxyl
radical antioxidant capacity (HORAC; Ou et al., 2002), on 10 mg of leaf
samples extracted with 1 mL of methanol, and using fluorescein as
fluorescent probe. The antioxidant scavenging activity was induced by a
free radical initiator, 2,2'-azobis-(2-amidino-propane) dihydrochloride
and Co(Ill) complex, and quantified with excitation at 480 nm and
emission at 530 nm, using a Victor3 1420 Multilabel Counter (Perkin
Elmer Inc., Waltham, MA, USA). Fluorescence/absorbance quantified
with antioxidant standard curves were expressed in Trolox and gallic
acid equivalents for ORAC and HORAC, respectively.

Superoxide dismutase (EC 1.15.1.1) activity (SODgt) was defined on
leaf extracts [50 mg in 1 mL of K-phosphate buffer (50 mM, pH 7), con-
taining glycerol 10 % (v/v), polyvinylpyrrolidone 1% (w/v), Triton X-
1000.1 % (v/v) and 1 mM EDTA] as the amount of superoxide dismutase
required to cause 50 % inhibition of the rate of nitroblue tetrazolium
reduction, assessed by its absorbance at 560 nm (Zhang and Kirkham,
1994); whereas catalase (EC 1.11.1.6) activity (CATac;) was evaluated on
leaf extracts (100 mg in 0.6 mL of the same buffer used for SODgq¢
determination) as the decomposition of hydrogen peroxide (H;05)
within one minute, assessed as the decrease in absorbance at 240 nm
(Aebi, 1984). After extraction of 40 mg of leaf samples with 0.4 mL of
Na-phosphate buffer (50 mM, pH 7.0) containing 1 mM EDTA, 0.1 %
(v/v) Triton X-100, 10 % (v/v) glycerol and 5 mM ascorbate, ascorbate
peroxidase (EC 1.11.1.11) activity (APX,.) was determined with the
method of Mittler and Zilinskas (1993), by measuring the oxidation of
ascorbate at 290 nm for 1 min (at 25 °C). For enzymatic assays, protein
concentrations were determined according to Bradford (1976).

Total ascorbate (Asc) content was determined extracting 10 mg of
leaf samiples with 1 mL of 6 % trichloroacetic acid (TCA, w/v), and then
running an assay based on the reduction of ferric ion (Fe®") to ferrous
ion (Fe2") with ascorbate in acid solution, followed by the formation of
the red chelate between Fe?™ and 2,2’-dipyridyl (Kampfenkel et al.,
1995). Absorbances were recorded at 525 nm and quantified with an Asc
standard curve. Total glutathione (Glut) content was determined
extracting 10 mg of leaf samples with 1 mL of 5% TCA, and then
following an enzymatic recycling procedure in which glutathione is
sequentially oxidized by 5,5'-dithiobis-2-nitrobenzoic acid and reduced
by NADPH in the presence of glutathione reductase (Sgherri and
Navari-lzzo, 1995). Absorbances were recorded at 412nm and
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quantified with a Glut standard curve.

Total phenols (Phen) were extracted from 5 mg of leaf samples with
1.9 mL of 95 % methanol for 48 h in the dark, and determined by the
Folin-Ciocalteu method, according to Ainsworth and Gillespie (2007).
Absorbances were recorded at 765nm and quantified as gallic acid
equivalents, using a standard curve. Total anthocyanins (Ant) were
extracted from 20 mg of leaf samples with 0.5 mL of 95 % acidified
ethanol (0.225N HCl), according to Cevallos-Casals and
Cisneros-Zevallos (2003) with minor modifications. Spectrophotometric
readings at 510 nm were taken subtracting absorbance at 700 nm (due to
turbidity). Total anthocyanins were expressed as cyanidin 3-glucoside
equivalents, using a molar extinction coefficient of 25,965 M ! em !
and a molecular weight of 449 g mol 2.

2.4. Analyses of spectral signatures

The effects of cultivar, Os, time and their interactions on the un-
transformed reflectance profiles of pomegranate (averaged per plant,
only data interpolations and profile jump corrections were performed)
were assessed by permutational multivariate analysis of variance
(PERMANOVA; Anderson, 2001), employing Euclidian measurements of
dissimilarity and 10,000 permutations. Permutational multivariate
analysis of variance was also used to test the effects of cultivar, O3 and
their interaction, keeping times of meassurement separated; and the
influence of O3, time and their interaction, keeping cultivars separated.
Finally, PERMANOVA was also used to determine the influence of O3 on
reflectance profiles at each time of analysis, keeping both cultivars and
times of analysis separated; and principal coordinates analysis (PCoA)
was used on these spectral data to visualize the spectral responses at all
times of analysis (i.e. 0, 1, 2, 5, 7 and 24 h FBE), always using Euclidean
distances through the ‘vegan’ package in R (www.r-project.org; Dixon,
2003). Principal coordinates analysis utilizes a distance of uncorrelated
variables, or principal coordinates, reducing the dimensionality of the
data.

The capability of spectroscopy to classify experimental groups, for
which significant effects were observed by PERMANOVA was further
determined by partial least squares-discriminant analysis (PLS-DA;
Chevallier et al., 2006). According to PERMANOVA approach, PLS-DA
was firstly used on all spectral profiles and then on subsets related to
separated times of analysis. Partial least squares-discriminant analysis is
a statistical analysis utilized with high dimensional data to discriminate
groups by projecting latent variables through the response and predictor
variables to both reduce data dimensionality and maximize prediction
accuracy. The PLS model fits response variables that are indicators of
groups of interest to the spectrum. This is an appropriate method for data
in which predictor variables have a high degree of collinearity (Cotrozzi
and Couture, 2020). The analyses were run 500 times by dividing ob-
servations into different groups of calibration (training) and validation
(testing) sets, and the number of correct classifications both in the cali-
bration and in the validation sets across the 500 iterations was used to
determine the accuracy of the tested model. The calibration:validation
data ratio and the number of components used to get the models that
would give the best fit to the data were determined by iteratively running
the PLS-DA models with different calibration:validation data ratio (i.e.
50:50, 70:30, 80:20) and numbers of components, and were based on the
highest kappa values returned for the validation models. Partial least
squares-discriminant analysis was run with the ‘caret’ and ‘vegan’
packages in R (www.r-project.org; Dixon, 2003; Kuhn, 2008).

2.5. PLSR-model calibration and validations

Fifteen leaf traits (i.e. A, g, Ci, E, WUE;;, MDA, ORAC, HORAC,
SODget, CATaer, APXqe, Asc, Glut, Phen and Ant) were predicted from
spectra using a PLSR (Wold et al., 2001) modeling approach, using un-
transformed reflectance profiles (only data interpolations and profile
jump corrections were performed). This ‘spectra-trait’ modeling was
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Fig. 1. Summary of leaf spectral measurements repeatedly collected (0, 1, 2, 5, 7 and 24 h from the beginning of exposure) on pomegranate cultivars (Parfianka and
Wonderful) exposed to a gradient of ozone concentrations (0, 50, 100 and 200 ppb), and devoted to the analyses of spectral signatures. The mean, mean + standard
deviation (SD), minimum and maximum leaf reflectance for all samples (n =540) are shown.

Table 1

F and P values of three-way permutational analysis of variance (PERMANOVA)
for the effects of cultivar, ozone (05), time and their interactions on full range
(400-2400 nm) reflectance profiles of pomegranate leaves. df represents the
degrees of freedom. ***: P < 0.001, P< 0.01, ns: P> 0.05. P value of the
Cultivar x O3 interaction is ns (italicized) because equal to 0.061 (marginally
significant).

Effect df F P
Cultivar 1 22.35 s
03 3 13.44 wEE
Time 5 2.59 i
Cultivar x O3 3 1.90 ns
Cultivar x Time 5 0.79 ns
03z x Time 15 0.83 ns
Cultivar x O3 x Time 15 0.73 ns

conducted using ca. 80 % of the whole dataset, in order to allow also an
external validation of the developed PLSR-models (see below). In
contrast to classical regression techniques, PLSR reduces a large number
of collinear predictor variables (as in the case with hyperspectral data)
into relatively few, uncorrelated latent variables, avoiding the risk of
producing unreliable coefficients and error estimates (Grossman et al.,
1996), thus becoming the favorite method for chemometric approaches
(e.g. Atzberger et al., 2010; Couture et al., 2016; Cotrozzi et al., 2017;
Ely et al., 2019). To avoid potential overfitting the models, the numbers
of latent variables to use were identified based on reduction of the
predicted residual sum of squares (PRESS) statistics (Chen et al., 2004)
using leave-one-out cross-validation. Finally, the selected sets of
extracted components were combined into linear models predicting leaf
traits from leaf reflectance profiles.

Model performance was assessed by running 500 randomized per-
mutations of the datasets using 80 % of the data for calibration and the
remaining 20 % for validation (i.e. internal validation). To assess model
performance, we calculated the model goodness-fit (RZ), the overall
error rate (RMSE, root-mean-square error), the bias and the percentage
of error over the data range (%RMSE), when applied to the calibration
and the validation datasets. These randomized analyses produced a
distribution of fit statistics allowing for the evaluation of model stability

as well as uncertainty in model predictions. The strength contribution of
PLSR loadings by individual wavelengths was also assessed using the
variable important to the projection (VIP) selection statistics, which
highlight the importance of individual wavelengths in explaining the
variation in both the response and predictor variables: larger weightings
confer higher value to contribution of individual wavelengths to the
predictive model (Wold et al., 2001; Chong and Jun, 2005). The
modelling approach and data analyses were performed using the ‘pls’
package in R (www.r-project.org; Mevik et al., 2016).

Before developing the final modelling, we tested preliminary models
to identify poorly predicted outliers. Prediction residuals were investi-
gated to identify potential outliers (Couture et al., 2016). Spectral pro-
files of outliers were further examined for errors (e.g. elevated
reflectance in the VIS wavelengths, spectral jumps produced by mis-
aligned detector splicing, concave spectral shape at the red-edge peak)
all likely due to operational errors during spectral collections (in refer-
ence or target measurements). Standard measurements of outliers were
also investigated for extremes in the data distribution. Outliers removed
accounted for approximately 15 % of the initial data, according to
previous studies (e.g. Couture et al., 2016; Marchica et al., 2019)

We additionally performed an external validation by applying PLSR-
coefficients on a dataset distinet from the one used for calibration and
validation (ca. 20 % of the whole dataset). Relations between predicted
and observed values were tested by regression analysis, and fit statistics
(i.e. R2, RMSE, bias) were again used to assess model estimation
accuracy.

2.6. Estimation of leaf traits by vegetation indices and PLSR-models

Four common vegetation indices were calculated from spectra: the
normalized difference vegetation index [NDVI=(R7g¢-Rs70)/
(Rygo+Rs70); Gamon et al., 1995] was determined to evaluate the po-
tential occurrence of (sub)visible symptoms; the photochemical reflec-
tance index [PRI=(Rs531-Rs70)/(R531+Rs570); Gamonetal., 1997; scaled as
sPRI=(PRI+1)/2 to avoid negative values] was determined to assess any
potential effect on photochemical system; the plant senescence reflec-
tance index [PSRI=(Rg7g-Rs00)/Rys0; Merzlyak et al., 1999; scaled as
SPSRI=(PSRI-1)/2 to avoid negative values] was determined to evaluate
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Fig. 2. Scores (mean + standard error) for the first and second principal components from principal coordinates analysis (PCoA) of reflectance data (400-2400 nm)
collected from leaves of pomegranate cultivars Parfianka (circle) and Wonderful (square), highlighting the ability of hyperspectral data to detect the effects of a
gradient of ozone (O3) concentrations (0 ppb, white; 50 ppb, light gray; 100 ppb, dark gray; 200 ppb, black; for 5h) at 0, 1, 2, 5, 7 and 24 h from the beginning of
exposure. For each cultivar and time, F and P values from permutational analysis of variance (PERMANOVA) for the effects of O; on full range (400-2400 nm)

PERMANOVA reveals a significant O3 effect, accuracy (Acc) and kappa (K) values from partial least squares discriminant analysis (PLS-DA) are also shown on the

bottom left corner of panels.

the occurrence of any potential senescence process; and a carotenoid
reflectance index [CRI:(R510)’1—(R550)’1; Gitelson et al., 2002] was
determined to investigate any potential accumulation of carotenoids as
defense response. Ry indicates reflectance at x nm wavelength.

Other leaf traits were estimated from spectra by using the best per-
forming PLSR-models. As already stated above, vegetation indices and
spectra-derived leaf traits were calculated from spectra averaged per
plant.

2.7. Statistical analysis of leaf traits derived from spectra

Collected samples were analyzed all together, using the plant as
experimental unit. The Shapiro-Wilk test was firstly used to assess the
normal distribution of spectral indices and leaf traits derived from
spectra by PLSR-models. The effects of cultivar, O, time and their in-
teractions on these leaf traits were then investigated by a three-way

repeated measures analysis of variance (ANOVA). Tukey’s test was
used as post-hoc test. Statistically significant effects were considered for
P < 0.05. Univariate statistical analyses were run in JMP 13.2.0 (SAS
Institute Inc., Cary, NC, USA).

3. Results
3.1. Leaf spectral signatures

Keeping in mind that no visible symptoms were observed during all
three days of analysis (some Os-induced minute brownish necrosis was
observed only after 5 days FBE on the adaxial surface of 3-4 leaves per
cultivar exposed to 200 ppb), a summary of leaf reflectance measure-
ments devoted to the analyses of spectral signatures is reported in Fig. 1.
The largest ranges in reflectance generally coincided with typical fea-
tures of foliar reflectance such as the peak at around 550 nm in the VIS,
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Table 2

Range, number of components (comp), model goodness-fit (RZ), root-mean square error (RMSE) and bias for calibration (Cal) and validation (Val) data generated using
500 random permutations of the data with 80 % used for cal and 20 % used for val for PLSR-models predicting leaf traits from pomegranate spectra. Data are shown as
mean + standard deviation. Bias for Cal is not shown since it was always <0.001. Trait abbreviations: A, CO, assimilation rate (pumol m ?s™); E, ranspiration (mmol
m 2 5'1); 2., stomatal conductance (mol m 2 5'1); C;, intercellular CO- concentration (pmol mol'l); WUEin, intrinsic water use efficiency (pmol mol']]; MDA, malon-
dialdehyde (pmol g* DW); ORAC, oxygen radical absorption capacity (mmol TE g DW); HORAC, hydroxyl radical antioxidant capacity (mmol GAE g™ DW); SOD,;,
superoxide dismutase activity (U mg'l protein); CAT,, catalase activity (U mg'] protein); APX,,, ascorbate peroxidase activity (U mg’1 protein); Asc, total ascorbate
(umol g DW); Glut, total glutathione (pmol g™* DW); Phen, total phenols (mmol GAE g DW); Ant, total anthocyanins (pmol C3GE g DW). DW: dry weighr; TE: rolox
equivalents; GAE: gallic acid equivalents; C3GE: cyanidin 3-glucoside equivalents.

Trait Range Comp Cal Val
(nm) R RMSE Rr? RMSE Bias

A 400—-900 10 0.73+0.07 0.76 +0.05 0.37 £0.29 1.20 +0.26 ~0.05+0.38
E 400900 13 0.91 +0.02 0.11 +0.01 0.60 +0.17 0.24 +0.05 0.00 +0.08
2 400-900 10 0.80 +0.03 0.04 +0.00 0.48 £0.22 0.06 +0.01 0.00 £0.02
G 400900 14 0.96 +0.02 3.04+0.31 0.60 £0.28 7.96+2.17 —0.57 £2.90
WUE;, 400—900 10 0.78 +0.04 0.87 +0.06 0.50 +£0.22 1.35+0.23 ~0.01+0.39
MDA 600900 12 0.89 £0.02 4.52+0.50 0.56 £0.18 9.03+1.74 0.29 £3.01
ORAC 400—800 17 0.97 +0.01 0.10 +0.01 0.61 +0.20 0.524+0.11 0.00+0.16
HORAC 9502400 11 0.86 +0.03 0.17 £0.02 0.44 £0.23 0.36 +0.08 0.01£0.12
SOD 4cc 600—900 14 0.97 +0.01 4.85+0.67 0.50 £0.22 21.36 +5.11 0.20 +6.68
CATacr 14002400 9 0.56 = 0.06 2,26 £0.17 0.14+0.19 3.52 +0.65 —0.02+1.15
APXqcr 400—2400 15 0.93 +0.02 —3e-21 + 5e-20 0.44 +0.27 1e-8 + 3e-6 0.00 +0.00
Asc 11001800 8 0.71 £0.03 0.94 +0.06 0.45+0.22 1.33+0.24 —0.02+0.45
Glut 500—1100 9 0.84 +0.04 3.91+0.50 0.37 £0.25 9.734+2.65 ~0.43+3.90
Phen 16002400 11 0.93+£0.01 0.05 4 0.00 0.77 £0.12 0.09 £0.02 0.00 £0.03
Ant 14001800 13 0.97 +0.01 0.03 +0.01 0.59 +0.19 0.32 4+ 0.06 ~0.01+0.11

throughout the NIR (8001300 nm) characterized by high reflectivity,
and peaks in the SWIR region centered at 1700, 1800 and 2200 nn.
After testing several spectral ranges to get highest significances from
PERMANOVA that was run to test the effects of cultivar, Oz, time and
their interactions on leaf reflectance profiles (Table $2), the best results
were recorded using the full range (i.e. 400—2400 nm). Final PERMA-
NOVA showed that cultivar, O5 and time affected the reflectance profile
of pomegranate leaves (Table 1). According to PLSDA, the best classi-
fications of cultivars, Os concentrations and times of analysis from
spectra (higher kappa) occurred with a 80:20 ratio for calibration:vali-
dation data using 20, 45 and 50 components, respectively: classification
accuracy and kappa were 0.96 + 0.02 and 0.92 + 0.04, 0.65 + 0.05 and
0.5340.06, and 0.84 +0.04 and 0.81 £ 0.04, respectively (data are
shown as mean + standard deviation). Only a marginally significant
effect (P = 0.06) was observed for the interaction cultivar x Oz, whereas
no significant effects were found for the other bi- and tri-factorial in-
teractions (Table 1). The bi-factorial effects cultivar x Os and O3 x time
were also not significant keeping times of analysis or cultivars separated,
respectively (Tables S3 and S4). However, keeping both cultivars and
times of analysis separated, PERMANOVA showed significant O5 effects
on Parfianka profiles at 1 h FBE, and on Wonderful ones at 1, 2, 5, and
24 h FBE (Fig. 2, showing PCoA results). According to PLS-DA (80:20
ratio for calibration:validation data), good classifications among Os
concentrations occurred in Wonderful at 5 and 24 h FBE (components,
accuracy and kappa: 20, 0.79+0.05 and 0.65+0.04, and 20,
0.71 +0.02 and 0.39 + 0.04, respectively), whereas lower classification
accuracies were found in Parfianka at 1 h FBE (components, accuracy
and kappa: 18, 0.63 +0.03, 0.18 +0.02), as well as in Wonderful at 1
and 2h FBE (components, accuracy and kappa: 18, 0.58 +0.02 and
0.13 4 0.04, and 24, 0.62 £+ 0.02 and 0.15 =+ 0.04, respectively). Highest
O3 concentration (i.e. 200 ppb) was well discriminated, while 50 and
100 ppb levels were mostly misclassified, and were sufficiently
diseriminated from O ppb condition only in Wonderful at 5 and 24 h FBE.

3.2. PLSR prediction models

We preliminary tested numerous PLSR-models containing several
wavelength ranges, including characteristic absorption features
(Curran, 1989) to optimize the statistical results (i.e. to obtain highest
model R? and lowest RMSE and bias) for the predictions of A, E, g, C;,
WUE;,, MDA, ORAC, HORAC, SOD,er, CATac, APXaer, Asc, Glut, Phen

and Ant from leaf spectra (Table S2). Final models for gas-exchange
traits (A, E, g, C; and WUE;,) utilized the wavelengths from
400-900 nm, using 10, 13, 10, 14 and 10 components, respectively
(Table 2). Similar spectral ranges were used in final models for MDA
(600—900 nm, 12 components), ORAC (400—-800 nm, 17 components),
SODg; (600900, 14 components) and Glut (500—1100 nm, 9 compo-
nents). Final models of the other leaf traits utilized longer NIR-SWIR
regions: 9502400 nm for HORAC (11 components), 1400—2400 nm
for CAT,; (9 components), 1100-1800nm for Asc (8 components),
16002400 nm for Phen (11 components), and 14001800 nm for Ant
(13 components). Only the final model for APX,.; was built using the full
range (i.e. 400—2400 nm), including 15 components. Table 2 summa-
rizes these outcomes for PLSR-models, as well as the statistical outputs
related to their performance.

Model performance was high for Phen, ORAC, E, Cj and Ant (R? and
%RMSE for validation: 0.77 and 16 %, 0.61 and 11 %, 0.60 and 18 %,
0.60 and 8%, 0.59 and 15 %, respectively), and moderate for MDA,
WUE;, and SOD,; (R? and %RMSE for validation: 0.56 and 17 %, 0.50
and 13 %, 0.50 and 16 %, respectively), while lower prediction per-
formance was found for g;, HORAC, APX,; and Asc (R? and %RMSE for
validation: 0.48 and 18 %, 0.44 and 16 %, 0.44 and 15 %, 0.45 and 16
%). Insufficient model performance was instead reported for A, Glut and
CAT,:. Statistical outputs for PLSR-model performances are reported in
Table 2 and Fig. 3. PLSR-model fit statistics for external validations were
similar to those registered for validations, except for HORAC that were
slightly lower (Table S5).

Standardized coefficients and VIP metrics (Fig. S1) showed wave-
lengths from 650 to 750 nm as most important for predictions of gas-
exchange traits (A, E, g, Cij and WUEjy; Fig. 3B,D,F,H,J), as well as of
MDA, ORAC, SOD.e, and Glut; whereas around 1400, 1700 and
1900 nm for HORAC and CAT,e, around 1700 and 1900 nm also for
Phen, and around 1650 nm for Ant. Finally, the whole VIS and wave-
lengths around 750 nm, together with spectral regions around 1400 and
1900 nm resulted most important for APX,.; prediction.

3.3. Vegetation indices and leaf traits predicted from spectra

Table 3 shows the effects of cultivar, O3, time and their interactions
on vegetation indices and selected leaf traits predicted from spectra. We
investigated only the leaf traits predicted by PLSR models with a vali-
dation R? greater than or equal to 0.5. Normalized different vegetation
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index and sPSRI only showed a significant O effect, slightly decreasing
only under 200 ppb (-6 and -2 % in comparison with controls, respec-
tively, averaging cultivars and times of analysis; data not shown). A
similar O3 effect was also observed on E, which significantly decreased
of 7 % under 200 ppb (means: 1.68 vs 1.80 mmol m~2s™1; E also showed
significant time and cultivar x time effects, actually). Intercellular CO5
concentration was not affected by Os, showing only a significant time
effect. Conversely, a significant cultivar x O3 interaction was found for
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Fig. 3. Observed vs partial least squares
regression (PLSR)-predicted values of leaf traits
related to plant-oxidative stress interaction in
pomegranate; error bars for predicted values
represent the standard deviations generated
from 500 simulated models; dashed line is 1:1
relationship; model goodness-fit (Rz), root-
mean-square error (RMSE), bias and %RMSE
for validation data generated using 80 % of the
data for calibration and 20 % for validation are
reported. See Table 2 caption for trait
abbreviations.

sPRI and SOD, (with SOD,¢ also showing a significant O3 x time
interaction), and a significant cultivar x O3 x time interaction was
observed for CRI, WUE;,, MDA, ORAC, Phen and Ant. Variations of these
leaf traits are reported in Figs. 4-7. Scaled photochemical reflectance
index slightly decreased only in Parfianka under 200ppb (-1 %,
Fig. 4B), while SOD, decreased in both cultivars under 200 ppb, but
more in Parfianka than in Wonderful (—24 vs —19 %, respectively;
Fig. 6A). Intrinsic water use efficiency decreased in both cultivars under
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Fig. 4. Variation in intrinsic water use efficiency (WUE;,, A) and photochemical reflectance index (PRI, B) in pomegranate cultivars Parfianka (circle) and Wonderful
(square) exposed to 0 (white), 50 (light gray), 100 (dark gray) or 200 ppb (black) of ozone (03) for 5 h. Measurements were carried out at 0, 1, 2, 5, 7 and 24 h from
the beginning of exposure. Data are shown as mean + standard error. Since three-way repeated measures ANOVA reveals a significant cultivar x O; x time inter-
action on WUE;, (see Table 3), according to Tukey’s post-hoc test, different letters indicate significant differences among means (P < 0.05). The thick black bar

indicates the time of O3 exposure (i.e. 5 h).

study was the concomitant prediction from spectra of numerous widely
used leaf traits related to oxidative pressure induced by O3 on plants. We
firstly focused on photosynthesis since it is a major plant process that is
severely affected by Os, usually by both stomatal and mesophyll con-
straints (Ainsworth, 2017). Standard collections of CO,- and
light-saturated photosynthesis, however, are sometimes logistically
challenging, usually requiring several minutes per leaf. Spectral ap-
proaches have been shown as a valid alternative to these standard
measurements since are able to estimate photosynthetic activity in
plants. Vegetation indices correlated with photosynthetic processes are
known (e.g. the xanthophyll cycle by PRI; Gamon et al., 1997; Penuelas
et al., 2011). Furthermore, specific and commonly used photosynthetic
traits have been directly predicted from spectral data, using multivariate
methods. However, few parameters have been investigated so far,
mainly the maximum rate of carboxylation (Vemax) and the maximum
rate of electron transport (Jy ., €.g. Serbin et al., 2012; Ainsworth et al.,
2014; Heckmann et al., 2017; Yendrek et al., 2017; Fu et al., 2020), and
never in pomegranate. Unexpectedly, among PLSR-modeled gas-ex-
change traits, we found a high prediction performance only for E and C;
(validation R% 0.60), and a moderate prediction accuracy for WUE;,
(validation R%: 0.50); whereas lower accuracies were observed for g; and
A (validation R%: 0.48 and 0.37, respectively). Although a low perfor-
mance in A prediction from spectra has been already reported using a
similar PLSR approach (e.g. Heckmann et al., 2017), these outcomes are

not in accordance with our previous results on sage (Marchica et al.,
2019) and maize (Cotrozzi et al., 2020b). This might be due to some
inaccuracies occurred with both spectral and standard gas-exchange
measurements of pomegranate leaves, being these short-stemmed,
oblong-lanceolate, small in size (ca. 5 cm long and 1 cm wide), with a
meaningful midvein, and leathery. Conversely, it is not surprising that
best predictions of gas-exchange traits were obtained using only the
wavelengths from 400 to 900 nm. The use of narrower ranges including
only specific absorption wavelengths for the trait to estimate sometimes
leads to better predictions than using the full range, since the incorpo-
ration of other spectral regions may reduce the prediction ability of
those trait-specific wavelengths (Cotrozzi et al., 2018b; Marchica et al.,
2019). Indeed, the 400900 nm spectral range finally used for estima-
tions of gas-exchange traits includes leaf pigment absorption features
(Merzlyak et al., 2003), as well as the red-edge (700—750 nm; Mutanga
and Skidmore, 2007). The importance of this pigment-related spectral
region in the assessment of the photosynthetic processes has been
largely shown (e.g. Gamon et al., 1997; Merzlyak et al., 2003; Serbin
et al., 2012; Yendrek et al., 2017). Several studies have also reported
that the shape of the red-edge is dependent on chlorophyll content (e.g.
Smith et al., 2004; Zarco-Tejada et al., 2004) and stress conditions (e.g.
Mutanga and Skidmore, 2007; Cotrozzi et al., 2018b). This supports the
importance of wavelengths from 650 to 750nm in predicting
gas-exchange traits highlighted by coefficient and VIP profiles of the
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Fig. 5. Variation in malondialdehyde (MDA, A) and oxygen radical absorption capacity (ORAC, B) in pomegranate cultivars Parfianka (circle) and Wonderful
(square) exposed to 0 (white), 50 (light gray), 100 (dark gray) or 200 ppb (black) of ozone (O3) for 5 h. Measurements were carried out at 0, 1, 2, 5, 7 and 24 h from
the beginning of exposure. Data are shown as mean =+ standard error. Since three-way repeated measures ANOVA reveals a significant cultivar x Os x time inter-
action on both MDA and ORAC (see Table 3), according to Tukey’s post-hoc test, different letters indicate significant differences among means (P < 0.05). The thick
black bar indicates the time of O3 exposure (i.e. 5 h). TE: trolox equivalents; GAE: gallic acid equivalents. Results are expressed on a dry weight basis.

PLSR-models here developed.

Although stomatal closure is the first response that leaves adopt
against Os in order to limit its uptake, plants have also developed
enzymatic (e.g. superoxide dismutase, catalase, and ascorbate peroxi-
dase) and non-enzymatic (e.g. carotenoids, Asc, Glut, Phen and Ant)
antioxidant systems to cope with the oxidative pressure due to the
extensive amount of reactive oxygen species (ROS) generated by the
rapid degradation of O3 in the leaf cell apoplast (Gill and Tuteja, 2010;
Pellegrini et al., 2016; Pistelli et al., 2019; Podda et al., 2019). The
assessment of these traits by standard biochemical analyses may be
precise, but has several limitations since these methods are destructive,
time consuming and expensive, all aspects that make these in-
vestigations logistically challenging for monitoring a large number of
individual plants. Here, we developed PLSR-models to predict from
spectral data a number of widely used leaf traits related to the lipid
peroxidation (MDA) induced by Os, as well as the antioxidant capacity
(ORAC and HORAC), and the main enzymatic (SODge, CATae and
APX,e) and non-enzymatic antioxidants of plants (Asc, Glut, Phen and
Ant). We had already developed PLSR-models for predicting some of
these traits from sage spectra (Marchica et al., 2019). Yendrek et al.
(2017) used the same approach to derive ORAC from maize reflectance
data. However, spectral estimations of enzymatic antioxidants were
never investigated before the present study. Interestingly, we found
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excellent prediction performance for Phen, ORAC and Ant (validation
R?:0.77, 0.61 and 0.59, respectively), whereas moderate accuracy was
observed for MDA and SOD, (validation R% 0.56 and 0.50, respec-
tively). Conversely, the models for HORAC, APX,, and Asc showed
lower performances (validation R? 0.44 for HORAC and APX., and
0.45 for Asc), and even lower accuracies were found for Glut and CAT .
The capability of spectroscopy data to accurately predict Phen is in
accordance with previous studies (e.g. Campos-Medina et al., 2019;
Cotrozzi and Couture, 2020), whereas the prediction outputs of models
here developed for the other traits are lower than those we reported on
sage (Marchica et al., 2019). These inconsistencies between the present
study and previous investigations suggest that these outcomes are likely
species- and stress condition-specific, as well as that improvement in
modeling methods is needed, as previously reported (Marchica et al.,
2019). Also for these traits, best predictions were reported using nar-
rower ranges including only specific absorption features, except for
APXcqr (4002400 nm). Similarly to gas-exchange traits, MDA, ORAC,
SOD,; and Glut were best predicted focusing on the pigment-related
wavelengths and the red-edge (600—900, 400—-800, 600—900 and
5001100 nm, respectively), and the sensitivity of these foliar spectral
features to oxidative stress induced by O5 was further highlighted by
coefficient and VIP profiles of these models. Conversely, HORAC, CAT-
ac, Asc and Phen best performed using longer NIR-SWIR regions
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Fig. 6. Variation in superoxide dismutase activity (SOD,., A) and carotenoid reflectance index (CRI, B) in pomegranate cultivars Parfianka (circle) and Wonderful
(square) exposed to 0 (white), 50 (light gray), 100 (dark gray) or 200 ppb (black) of ozone (Os) for 5 h. Measurements were carried out at 0, 1, 2, 5, 7 and 24 h from
the beginning of exposure. Data are shown as mean + standard error. Since three-way repeated measures ANOVA reveals a significant cultivar x O x time inter-
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the time of O; exposure (i.e. 5 h).

(9502400, 1400-2400, 1100-1800 and 1600-—-2400nm, respec-
tively), which are characterized by absorption features of larger mole-
cules such as carbohydrates, proteins and water (Cotrozzi et al., 2018b).
Indeed, coefficient and VIP profiles of these PLSR-models highlighted
important wavelengths around 1400, 1700 and 1900 nm (also around
750 nm for APX_q), according with previous reports about the remote
sensing of foliar chemistry (Curran, 1989; Bolster et al., 1996; Serbin
et al., 2014; Cotrozzi et al., 2018b). Although the approach proposed
here may have limitations in discriminating fine scale variations of some
biochemical traits (and we thus suggest caution when deciphering re-
sults from a small range of values), the present study also shows the
potential to expand prediction capabilities of reflectance data for
important and commonly investigated leaf biochemical features
involved in the response of plants to oxidative pressure.

An overall benefit of the present study is that it concretely shows the
potential of using the abovementioned and complementary spectro-
scopic approaches for investigating plant/stress interactions. The ana-
lyses of spectral signatures suggested two main interpretations: (i) a
good tolerance of pomegranate to O3 episodes, since it seemed sub-
stantially affected only by the highest O3 concentration (i.e. 200 ppb),
although negative effects induced by a chronic O3 exposure on ponie-
granate cultivar Dente di cavallo were reported (Calzone et al., 2019);
and (ii) an higher O3 tolerance of cultivar Parfianka than Wonderful.
These responses were confirmed by variations of the investigated
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vegetation indices and leaf traits derived from spectra (again, only leaf
traits estimated with most accurate PLSR-models were used). Normal-
ized different vegetation index, sPSRI and E variations respectively
indicated that the 200 ppb O3 episode induced changes in leaf greenness
(even if no visible symptoms were detected during measurements, this
being another good example of spectroscopy potential), senescing pro-
cesses, and impairments to the photosynthetic activity. The occurrence
of negative effects on the photosynthetic performance was confirmed by
reductions of WUE;;, observed in all plants at 5h, and again only in
Wonderful at 24 h, confirming the higher O sensitivity of this cultivar.
Actually, no other Os-induced adverse effects were observed on Par-
fianka, except for a slight reduction of sPRI likely due to a reorganization
of the xanthophyll cycle (Peniuelas et al., 2011). The WUE;, reductions,
together with unchanged C; values, suggested that both stomatal and
mesophyll limitations occurred. Effectively, increased lipid peroxidation
was observed only in Wonderful, from 2 h FBE to the end of the exper-
iment. This was likely due to decreases in secondary metabolites, since
Phen were similarly reduced by Os from 1 to 24 h FBE, and Ant dropped
at the end of the exposure (i.e. 5h FBE), likely when highest oxidative
pressure occurred, as confirmed by variations of spectral signatures. The
role of secondary metabolites in plant defense against abiotic stress is
largely known (Ashraf et al., 2018; Naikoo et al., 2019). This outcome
was supported by the inability of Wonderful plants to activate a proper
antioxidant response since ORAC increased only at 2h FBE, SODget
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decreased (in both cultivars, actually), and an accumulation of carot-
enoids (CRI) did not occur. An increase of CRI was instead observed in
Wonderful under 100 ppb, at 2 and 7 h FBE, likely to cope with harmful
conditions observed at 5 h FBE, as demonstrated by the increase of MDA
occurred at this time, as well as by changes in spectral signatures. Also in
this case, the enhanced lipid peroxidation was twinned with a reduction
of Phen, confirming the role of these compounds in plant defense (e.g.
consumption of these compounds by the cell to counteract the accu-
mulation of H>05). These variations confirm the higher Q5 sensitivity of
Wonderful than Parfianka, since Parfianka, in accordance to the ana-
lyses of spectral signatures, did not show any leaf trait changes under
100 ppb (CRI decreased at 5 h FBE, actually). The 50 ppb concentration
was confirmed to not affect pomegranate (further investigations would
be needed to explain the ORAC decrease at 5h FBE, since no changes
were observed among the investigated antioxidants). Overall, the re-
sponses shown by our cultivars to cope with O3 episodes are in accor-
dance with previous reports (e.g. Kangasjarvi et al., 2005; Vainonen and
Kangasjarvi, 2015).

5. Conclusions
In conclusion, the present study confirms that spectral information

can accurately identify different cultivars of the same species, as well as
oxidative stress conditions in plants exposed to a gradient of Os
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concentration episodes. This spectral detection works also in the absence
of visible symptoms and using Os-tolerant plants/cultivars like pome-
granate (especially the cultivar Parfianka). Furthermore, this study
confirms that vegetation spectroscopy can be a rapid, non-destructive,
and relatively inexpensive tool to concomitantly and accurately esti-
mate an array of widely used physiological and biochemical leaf traits
(some of them never investigated before) associated with oxidative
stress/plant interaction, using a single spectral measurement. The pre-
sent study also shows limitations of the proposed approach, such as in
discriminating interactive effects from spectral profiles, especially for
tolerant cultivars, and under mild stress conditions. In the same way,
limits are evident in predicting specific leaf traits from spectra collected
on leaves that are morphologically challenging to measure. Neverthe-
less, outcomes and approaches presented in the current study could be of
application in a number of scientific fields such as precision agriculture
and high-throughput plant phenotyping, and could provide significant
benefits to achieve greater plant yield and quality (and incomes), with
lower environmental impact.

CRediT authorship contribution statement

Antonella Calzone: Investigation, Formal analysis, Writing - orig-
inal draft. Lorenzo Cotrozzi: Conceptualization, Methodology, Formal
analysis, Data curation, Writing - original draft. Damiano Remorini:



A. Calzone et al.

Methodology, Writing - review & editing. Giacomo Lorenzini:
Conceptualization, Writing - review & editing, Resources. Cristina Nali:
Conceptualization, Resources. Elisa Pellegrini: Conceptualization,
Writing - review & editing, Resources, Supervision.

Declaration of Competing Interest

The authors declare no conflict of interest.

Acknowledgments

Authors gratefully acknowledge Francesco Pitta for helping with
spectral measurements and data organization, and Andrea Parrini for
supervising the growth chamber and the ozone exposure facilities.

This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the
online version, at doi:https://doi.org/10.1016/j.envexpbot.2020.10430
9.

References

Aebi, H., 1984. Catalase in vitro. Methods Enzymolol. 105, 121-123. https://doi.org/
10.1016/S0076-6879(84)05016-3.

Ainsworth, E.A., 2017. Understanding and improving global crop response to ozone
pollution. Plant J. 90, 886-897. https://doi.org/10.1111/tpj.13298.

Ainsworth, E.A., Gillespie, K.M., 2007. Estimation of total phenolic content and other
oxidation substrates in plant tissues using Folin-Ciocalteau reagent. Nat. Protoc. 4,
875-877. hittps://doi.org/10.1038/nprot.2007.102.

Ainsworth, E.A., Serbin, S.P., Skoneczka, J.A., Townsend, P.A., 2014, Using leaf optical
properties to detect ozone effects on foliar biochemistry. Photosyn. Res. 119, 65-76.
https://doi.org/10.1007 /s11120-013-9837-y.

Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of
variance. Austral Ecol. 26, 32-46. https://doi.org/10.1111/5.1442-
9993.2001.01070.pp.x.

Ashraf, M.A., Igbal, M., Rasheed, R., Hussain, I., Riaz, M., Arif, M.S., 2018.
Environmental stress and secondary metabolites in plants: an overview. In:
Ahmad, P., Ahanger, M.A., Singh, V.P., Tripathi, D.K., Alam, P., Alyemeni, M.N.
(Eds.), Plant Metabolites and Regulation Under Environmental Stress. Academic
Press, London, pp. 153-167.

Atzberger, C., Guerif, M., Baret, F., Werner, W., 2010. Comparative analysis of three
chemometric techniques for the spectrometric assessment of canopy chlorophyll
content in winter wheat. Comput. Electron. Agric. 73, 165-173. https://doi.org/
10.1111/10.1016/j.compag.2010.05.006.

Begum, H., Alam, M.S., Feng, Y., Koua, P., Ashrafuzzman, M., Shrestha, A.,
Kamruzzaman, M., Dadshani, S., Ballvora, A., Naz, A.A., Frei, M., 2020. Genetic
dissecation of bread wheat diversity and identification of adaptive loci in response to
elevated tropospheric ozone. Plant Cell Environ. 43, 2650-2665. https://doi.org/
10.1111/pce.13864.

Bolster, K.L., Martin, M.E., Aber, J.D., 1996. Determination of carbon fraction and
nitrogen concentration in tree foliage by near infrared reflectance: a comparison of
statistical methods. Can. J. For. Res. 26, 590-600. https://doi.org/10.1139/x26-068.

Bradford, M., 1976. A rapid and sensitive method for the quantitation of microgram
quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.
72, 248-254. https://doi.org/10.1006/abio.1976.9999.

Calzone, A., Podda, A., Lorenzini, G., Maserti, B.E., Carrari, E., Deleanu, E., Hoshika, Y.,
Haworth, M., Nali, C., Badea, O., Pellegrini, E., Fares, S., Paoletti, E., 2019. Cross-
talk between physiological and biochemical adjustments by Punica granatum cv.
Dente di cavallo mitigates the effects of salinity and ozone stress. Sci. Total Environ.
656, 589-597. https://doi.org/10.1016/j.scitotenv.2018.11.402.

Calzone, A., Cotrozzi, L., Pellegrini, E., Guidi, L., Lorenzini, G., Nali, C., 2020.
Differential response strategies of pomegranate cultivars lead to similar tolerance to
increasing salt concentrations. Sci. Hortic. 271, 109441. htips://doi.org/10.1016/].
scienta.2020.109441.

Campos-Medina, V.A., Cotrozzi, L., Stuart, J.J., Couture, J.J., 2019. Spectral
characterization of wheat functional trait responses to Hessian fly: mechanisms for
trait-based resistance. PLoS One 14, 0219431, https://doi.org/10.1371/journal.
pone.0219431.

Catola, S., Marino, G., Emiliani, G., Huseynova, T., Musayev, M., Akparov, Z., Maserti, B.
E., 2016. Physiological and metabolomic analysis of Punica granatum (L.) under
drought stress. Planta 243, 441449, https://doi.org/10.1371/10.1007 /s00425-
015-2414-1.

Cavender-Bares, J., Meireles, J.E., Couture, J.J., Kaproth, M.A., Kingdon, C.C., Singh, A.,
Serbin, S.P., Center, A., Zuniga, E., Pilz, G., Townsend, P.A., 2016. Associations of

13

Environmental and Experimental Botany 182 (2021) 104309

leaf spectra with genetic and phylogenetic variation in oaks: prospects for remote
detection of biodiversity. Remote Sens. 8, 221. https://doi.org/10.3390,/rs8030221.

Cevallos-Casals, B.A., Cisneros-Zevallos, L., 2003. Stoichiometric and kinetic studies of
phenolic antioxidants from Andean purple corn and red-fleshed sweet potato.

J. Agric. Food Chem. 51, 3313-3319. https://doi.org/10.1021/jf034109¢c.

Chen, S., Hong, X., Harris, C.J., Sharkey, P.M., 2004. Sparse modeling using orthogonal
forest regression with PRESS statistic and regularization. IEEE Trans. Syst. Man
Cybernetics Part B (Cybernetics) 34, 898-911. https://doi.org/10.1109/
tsmeb.2003.817107.

Chevallier, S., Bertand, D., Kohler, A., Courcoux, P., 2006. Application of PLS-DA in
multivariate image analysis. J. Chemom. 20, 221-229. https://doi.org/10.1002/
cem.994.

Chong, 1.-G., Jun, C.-H., 2005. Performance of some variable selection methods when
multicollinearity is present. Chemom. Intell. Lab. Syst. 28, 103-112. https://doi.org/
10.1016/j.chemolab.2004.12.011.

Cotrozzi, L., Couture, J.J., 2020. Hyperspectral assessment of plant responses to multi-
stress environments: prospects for managing protected agrosystems. Plants People
Planet 2, 244-258. https://doi.org/10.1002/ppp3.10080.

Cotrozzi, L., Couture, J.J., Cavender-Bares, J., Kingdon, C.C., Fallon, B., Pilz, G.,
Pellegrini, E., Nali, C., Townsend, P.A., 2017. Using foliar spectral properties to
assess the effects of drought on plant water potential. Tree Physiol. 37, 1582-1591.
https://doi.org/10.1093/treephys/tpx106.

Cotrozzi, L., Remorini, D., Pellegrini, E., Guidi, L., Nali, C., Lorenzini, G., Massai, R.,
Landi, M., 2018a. Living in a Mediterranean city in 2050: broadleaf or evergreen
‘citizens’? Environ. Sci. Pollut. Res. - Int. 25, 8161-8173. https://doi.org/10.1007/
511356-017-9316-7.

Cotrozzi, L., Townsend, P.A., Pellegrini, E., Nali, C., Couture, J.J., 2018b. Reflectance
spectroscopy: a novel approach to better understand and monitor the impact of air
pollution on Mediterranean plants. Environ. Sci. Pollut. Res. - Int. 25, 8249-8267.
https://doi.org/10.1007/511356-017-9568-2.

Cotrozzi, L., Lorenzini, G., Nali, C., Pellegrini, E., Saponaro, V., Hoshika, Y., Arab, L.,
Rennenberg, H., Paoletti, E., 2020a. Hyperspectral reflectance of light-adapted
leaves can predict both dark- and light-adapted Chl fluorescence parameters, and the
effects of chronic ozone exposure on date palm (Phoenix dactylifera). Int. J. Mol. Sci.
21, 6441. htips://doi.org/10.3390/ijms21176441Cotrozzi.

Cotrozzi, L., Peron, R., Tuinstra, M.R., Mickelbart, M.V., Couture, J.J., 2020b. Spectral
phenotyping of physiological and anatomical leaf traits related with maize water
status, Plant Physiol. 184, 1363-1377, https://doi.org/10.1104/pp.20.00577,

Couture, J.J., Singh, A., Rubert-Nason, K.F., Serbin, S.P., Lindroth, R.L., Townsend, P.A.,
2016. Spectroscopic determination of ecologically relevant plant secondary
metabolites. Methods Ecol. Evol. 7, 1402-1412. https://doi.org/10.1111/2041-
210X.12596.

Curran, P.J., 1989. Remote sensing of foliar chemistry. Remote Sens. Environ. 30,
271-278. https://doi.org/10.1016,/0034-4257(89)90069-2.

Dixon, P., 2003. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14,
927-930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x.

Ely, K.S., Burnett, A.C., Lieberman-Cribbin, W., Serbin, S.P., Rogers, A., 2019.
Spectroscopy can predict key leaf traits associated with source-sink balance and
carbon-nitrogen status. J. Exp. Bot. 70, 1789-1799. https://doi.org/10.1093/jxb/
erz061.

Fu, P., Meacham-Hensold, K., Guan, K., Wu, J., Bernacchi, C., 2020, Estimating
photosynthetic traits from reflectance spectra: A synthesis of spectral indices,
numerical inversion, and partial least square regression. Plant Cell Environ. 43,
1241-1258. https://doi.org/10.1111/pce.13718.

Gamon, J.A., Field, C.B., Goulden, M.L., Griffin, K.L., Hartley, A.E., Joel, G., Penuelas, J.,
Valentini, R., 1995. Relationships between NDVI, canopy structure, and
photosynthesis in three Californian vegetation types. Ecol. Appl. 5, 28-41. https://
doi.org/10.2307/1942049.

Gamon, J.A., Serrano, L., Surfus, J.S., 1997. The photochemical reflectance index: an
optical indicator of photosynthetic radiation use efficiency across species, functional
types, and nutrient levels. Oecologia 112, 492-501. https://doi.org/10.1007/
s004420050337.

Gill, S.S., Tuteja, N., 2010. Reactive oxygen species and antioxidant machinery in abiotic
stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909-930. https://doi.
org/10.1016/j.plaphy.2010.08.016.

Gitelson, A.A., Zur, Y., Chivkunova, O.B., Merzlyak, M.N., 2002. Assessing carotenoid
content in plant leaves with reflectance spectroscopy. Photochem. Photobiol. 75,
272-281. https://doi.org/10.1562,/0031-8655(2002)075<027 2:accipl>2.0.co;2.

Gongora-Canul, C., Salgado, J.D., Singh, D., Cruz, A.P., Cotrozzi, L., Couture, J.,
Rivadeneira, M.G., Cruppe, G., Valent, B., Todd, T., Poland, J., Cruz, C.D., 2020.
Temporal dynamics of wheat blast epidemics and disease measurements using
multispectral imagery. Phytopathology 110, 393-405. https://doi.org/10.1094/
PHYTO-08-19-0297-R.

Grossman, Y.L., Ustin, S.L., Jacquemond, S., Sanderson, E.W., Schmuck, G.,

Verdebout, J., 1996. Critique of stepwise multiple linear regression for the extraction
of leaf biochemistry information from leaf reflectance data. Remote Sens. Environ.
56, 182-193. https://doi.org/10.1016/0034-4257(95)00235-9.

Guidi, L., Remorini, D., Cotrozzi, L., Giordani, T., Lorenzini, G., Massai, R., Nali, C.,
Natali, L., Pellegrini, E., Trivellini, A., Vangelisti, A., Vernieri, P., Landi, M., 2016.
The harsh life of an urban tree: the effect of a single pulse of ozone in salt-stressed
Quercus ilex saplings. Tree Physiol. 37, 246-260. https://doi.org/10.1093/treephys/
tpw103.

Heckmann, D., Schliiter, U., Weber, A.P.M., 2017. Machine learning techniques for
predicting crop photosynthetic capacity from leaf reflectance spectra. Mol. Plant 10,
878-890. https://doi.org/10.1016/j.molp.2017.04.009.



A. Calzone et al.

Hodges, D.M., DeLong, J.M., Forney, C.F., Prange, R.K., 1999. Improving the
thiobarbituric acid reactive substances assay for estimating lipid peroxidation in
plant tissues containing anthocyanin and other interfering compounds. Planta 207,
604-611. https://doi.org/10.1007 /5004250050524,

Johanningsmeier, §.D., Harris, G.K., 2011. Pomegranate as a functional food and
nutraceutical source. Annu. Rev. Food Sci. Technol. 2, 181-201. https://doi.org/
10.1146/annurev-food-030810-153709.

Kampfenkel, K., Van Montagu, M., Inzé, D., 1995. Extraction and determination of
ascorbate and dehydroascorbate from plant tissue. Anal. Biochem. 225, 165-167.
https://doi.org/10.1006/abio.1995.1127.

Kangasjarvi, J., Jaspers, P., Kollist, H., 2005. Signalling and cell death in ozone-exposed
plants. Plant Cell Environ. 28, 1021-1036. https://doi.org/10.1111/}.1365-
3040.2005.01325.x.

Khodabakhshian, R., Emadi, B., Khojastehpour, M., Golzarian, M.R., 2019.

A comparative study of reflectance and transmittance models of VIS/NIR
spectroscopy used in determining internal quality attributes in pomegranate fruits.
J. Food Meas. Charact. 13, 3130-3139. https://doi.org/10.1007/511694-019-
00235-z.

Kuhn, M., 2008. Building predictive models in R using the caret package. J. Stat. Softw.
28, 5. https://doi.org/10.18637 /jss.v028.105.

Landi, M., Cotrozzi, L., Pellegrini, E., Remorini, D., Tonelli, M., Trivellini, A., Nali, C.,
Guidi, L., Massai, R., Vernieri, P., Lorenzini, G., 2019. When “thirsty” means “less
able to activate the signalling wave trigged by a pulse of ozone™ a case of study in
two Mediterranean deciduous oak species with different drought sensitivity. Sci.
Total Environ. 657, 379-390. https://doi.org/10.1016/j.scitotenv.2018.12.012.

Lefohn, A.S., Malley, C.S., Smith, L., Wells, B., Hazucha, M., Simon, H., Naik, V.,

Mills, G., Schultz, M.G., Paoletti, E., De Marco, A., Xu, X., Zhang, L., Wang, T.,
Neufeld, H.S., Musselman, R.C., Tarasick, D., Brauer, M., Feng, Z., Tang, H.,
Kobayashi, K., Sicard, P., Solberg, S., Gerosa, G., 2018. Tropospheric ozone
assessment report: global ozone metrics for climate change, human health, and crop/
ecosystem research. Elementa Sci. Anthropocene 6, 28. htips://doi.org/10.1525/
elementa.279.

Marchica, A., Loré, S., Cotrozzi, L., Lorenzini, G., Nali, C., Pellegrini, E., Remorini, D.,
2019. Early detection of sage (Salvia officinalis L.) responses to ozone using
reflectance spectroscopy. Plants 8, 346. hitps://doi.org/10.3390/plants8090346.

Merzlyak, M.N., Gitelson, A.A., Chivkunova, O.B., Rakitin, V.Y., 1999. Non-destructive
optical detection of pigment changes during leaf senescence and fruit ripening.
Physiol. Plant. 106, 135-141. https://doi.org/10.1034/§.1399-3054.1999.106119.x.

Merzlyak, M.N., Gitelson, A.A., Chivkunova, O.B., Solovchenko, A.E., Pogosyan, S.L,
2003. Application of reflectance spectroscopy for analysis of higher plant pigments.
Russ. J. Plant Physiol. 50, 704-710. https://doi.org/10.1023/A:1025608728405.

Mevik, B.H., Wehrrens, R., Liland, K.H., 2016. Pls: Partial Least Squares and Principal
Component Regression. R Package Version 2.6-0. https://CRAN.R-project.org
/package=pls.

Mittler, B., Zilinskas, B.A., 1993. Detection of ascorbate peroxidase activity in native gels
by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal.
Biochem. 212, 540-546. https://doi.org/10.1006/abio.1993.1366.

Mutanga, O., Skidmore, A.K., 2007. Red edge shift and biochemical content in grass
canopies. ISPRS J. Photogramm. Remote. Sens. 62, 34-42. https://doi.org/10.1016/
j.isprsjprs.2007.02.001.

Naikoo, M.L, Dar, M.1., Raghib, F., Jaleel, H., Ahmad, B., Raina, A., Khan, F.A,,
Naushin, F., 2019. Role and regulation of plants phenolics in abiotic stress tolerance:
an overview. In: Khan, M.LR., Reddy, P.S., Ferrante, A., Khan, N.A. (Eds.), Plant
Signaling Molecules. Woodhead Publishing, Sawston, pp. 157-168.

Ochoa-Hueso, R., Munzi, S., Alonso, R., Arréniz-Crespo, M., Avila, A., Bermejo, V., et al.,
2017. Ecological impacts of atmospheric pollution and interactions with climate
change in terrestrial ecosystems of the Mediterranean Basin: current research and
future directions. Environ. Pollut. 227, 194-206. https://doi.org/10.1016/].
envpol.2017.04.062.

Ou, B., Hampsch-Woodill, M., Prior, R.L., 2001. Development and validation of an
improved oxygen radical absorbance capacity assay using fluorescein as fluorescent
probe. J. Agric. Food Chem. 49, 4619-4626. https://doi.org/10.1016/10.1021/
jf0105860.

14

Environmental and Experimental Botany 182 (2021) 104309

Ou, B., Hampsch-Woodill, M., Flanagan, J., Deemer, E.K., Prior, R.L., Huang, D., 2002.
Novel fluorometric assay for hydroxyl radical prevention capacity using fluorescein
as the probe. J. Agric. Food Chem. 50, 2772-2777. https://doi.org/10.1021/
jf011480w.

Pellegrini, E., Trivellini, E., Cotrozzi, L., Vernieri, P., Nali, C., 2016. Involvement of
phytohormones in plant responses to ozone. In: Ahammed, G., Yu, J.Q. (Eds.), Plant
Hormones Under Challenging Environmental Factors. Springer, Dordrecht,
pp. 215-245,

Pellegrini, E., Campanella, A., Cotrozzi, L., Tonelli, M., Nali, C., Lorenzini, G., 2018.
Ozone primes changes in phytochemical parameters in the medicinal herb Hypericum
perforatum (St. John’s wort). Ind. Crops Prod. 126, 119-128. https://doi.org/
10.1016/j.indcrop.2018.10.002.

Penuelas, J., Garbulsky, M.F., Filella, I., 2011. Photochemical reflectance index (PRI) and
remote sensing of plant CO> uptake. New Phytol. 191, 596-599. https://doi.org/
10.1111/j.1469-8137.2011.03791.x.

Pistelli, L., Tonelli, M., Pellegrini, E., Cotrozzi, L., Pucciariello, C., Trivellini, A.,
Lorenzini, G., Nali, C., 2019. Accumulation of rosmarinic acid and behaviour of ROS
processing systems in Melissa officinalis L. under heat stress. Ind. Crops Prod. 138,
111469 https://doi.org/10.1016/j.indcrop.2019.111469.

Podda, A., Pisurttu, C., Hoshika, Y., Pellegrini, E., Carrari, E., Lorenzini, G., Nali, C.,
Cotrozzi, L., Zhang, L., Baraldi, R., Neri, L., Paoletti, E., 2019. Can nutrient
fertilization mitigate the effects of ozone exposure on an ozone-sensitive poplar
clone? Sci. Total Environ. 657, 340-350. https://doi.org/10.1016/].
scitotenv.2018.11.459.

Serbin, S.P., Dillaway, D.N., Kruger, E.L., Townsend, P.A., 2012. Leaf optical properties
reflect variation in photosynthetic metabolism and its sensitivity to temperature.

J. Exp. Bot. 63, 489-502. https://doi.org/10.1093/jxb/err294.

Serbin, S.P., Singh, A., McNeil, B.E., Kingdon, C.C., Townsend, P.A., 2014. Spectroscopic
determination of leaf morphological and biochemical traits for northern temperate
and boreal tree species. Ecol. Appl. 24, 1651-1669. https://doi.org/10.1890/13-
2110.1.

Serbin, S.P., Singh, A., Desai, A.R., Dubois, S.G., Jablosnki, A.D., Kingdon, C.C.,
Kruger, E.L., Townsend, P.A., 2015. Remotely estimating photosynthetic capacity,
and its response to temperature, in vegetation canopies using imaging spectroscopy.
Remote Sens. Environ. 167, 78-87. https://doi.org/10.1016/j.rse.2015.05.024.

Sgherri, C.L.M., Navari-Izzo, F., 1995. Sunflower seedlings subjected to increasing water
deficit stress: oxidative stress and defence mechanisms. Physiol. Plant. 93, 25-30.
https://doi.org/10.1034/j.1399-3054.1995.930105.x.

Singh, B., Singh, J.P., Kaur, A., Singh, N., 2018. Phenolic compounds as beneficial
phytochemicals in pomegranate (Punica granatum L.) peel: a review. Food Chem.
261, 75-86. https://doi.org/10.1016/j.foodchem.2018.04.039.

Smith, K.L., Steven, M.D., Colls, J.J., 2004. Use of hyperspectral derivative tools in red-
edge region to identify plant stress response to gas leaks. Remote Sens. Environ. 92,
207-212. https://doi.org/10.1016/j.rse.2004.06.002.

Texeira da Silva, J.A., Rana, T.S., Narzary, D., Verma, N., Meshram, D.T., Ranade, S.A.,
2013. Pomegranate biology and biotechnology: a review. Sci. Hortic. 160, 85-107.
https://doi.org/10.1016/j.scienta.2013.05.017.

Vainonen, J.P., Kangasjarvi, J., 2015. Plant signalling in acute ozone exposure. Plant Cell
Environ. 38, 240-252. https://doi.org/10.1111/pece.12273.

Wold, S., Sjostrém, M., Eriksson, L., 2001. PLS-regression: a basic tool of chemometrics.
Chemom. Intell, Lab. Syst. 58, 109-130. https://doi.org/10.1016,/50169-7439(01)
00155-1.

Yendrek, C.R., Tomaz, T., Montes, C.M., Cao, Y., Morse, A.M., Brown, P.J., McIntyre, L.
M., Leakey, A.D.B.. Ainsworth, E.A., 2017. High-throughput phenotyping maize leaf
physiological and biochemical traits using hyperspectral reflectance. Plant Physiol.
173, 614-626. https://doi.org/10.1104/pp.16.01447.

Zarco-Tejada, P.J., Miller, J.R., Morales, A., Berjon, A., Agiiera, J., 2004, Hyperspectral
indices and model simulation for chlorophyll estimation in open-canopy tree crops.
Remote Sens. Environ. 9, 463-476, https://doi.org/10.1016/j.rse.2004.01.017,

Zhang, J., Kirkham, M.B., 1994. Drought-stress-induced changes in activities of
superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol.
35, 783-791. https://doi.org/10.1093/oxfordjournals.pcp.a078658.



